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Abstract—In this paper, we propose DDPMVC, a voice conver-
sion (VC) model for non-parallel data that utilizes the diffusion
model. The distinctive feature of diffusion models lies in their
high expressive power for high-dimensional data and their ability
to learn more stably compared to traditional generative models.
Although several VC methods using diffusion models have been
proposed, only VoiceGrad meets the non-parallel and any-to-
many condition, which makes it easy to handle in training and
inference. DDPMVC is regarded as an extension of VoiceGrad
that incorporates a rule-based diffusion process into the encoder.
By using the encoder to convert speech into latent variables that
have less speaker information, it is expected to improve the accu-
racy of the non-parallel VC. Experimental results demonstrated
that the performance of DDPMVC surpassed that of VoiceGrad
in terms of the mel cepstral distortion and speaker similarity.

I. INTRODUCTION

Voice conversion (VC) is a technology that enables the
transformation of a speaker identity into that of another without
altering the speech content. It is categorized based on the
type of data utilized: parallel data, which involves aligning the
same spoken content across different speakers, and non-parallel
data, which involves the arbitrary alignment of spoken content.
Conversion targets include those from one specific speaker
to another (One-to-One) and from specific multiple speak-
ers to other specific multiple speakers (Many-to-Many).
However, converting any speaker to specific multiple speakers
(Any-to-Many) is deemed the ideal scenario.

Currently, research on VC predominantly utilizes deep
learning models, with variational autoencoders (VAE) [1]
and generative adversarial networks (GAN) [2] being notable
examples. However, recent advancements have introduced dif-
fusion models for voice conversion, demonstrating superior
performance over traditional deep learning approaches such as
VAE and GAN [3]–[5]. The diffusion-based VC [4] utilizes
the continuous-time denoising diffusion probabilistic model
(DDPM) [6], [7], distinguished by its use of an average voice
extractor in the encoder. Similarly, DiffSVC [3] utilizes DDPM
for VC, specifically targeting the conversion of singing voices.
However, the diffusion-based VC requires parallel data for
Many-to-Many VC models, and DiffSVC, while aimed at
singing voices, does not support multiple speakers in Any-to-

One conversions. In contrast, VoiceGrad [5] utilizes a score-
based generative modeling (SBM) [8] within diffusion models
for VC, achieving Any-to-Many conversions using non-parallel
data. Non-parallel VC methods generally assume that the
speech is generated by speaker-independent (phonetic) infor-
mation accompanied with speaker information, and consist of
an encoder that extracts phonetic information from speech and
a decoder that generates speech from it given a target speaker’s
label [9]. VoiceGrad performs sampling without the use of
an encoder. Consequently, it attempts the conversion to the
target speaker without separating the speaker characteristics
of the source speaker. This approach can result in suboptimal
conversion accuracy, particularly when there are significant
differences between the characteristics of the source and target
speakers. Therefore, there is potential for improvement in
the conversion accuracy of VoiceGrad under these conditions.
In this study, we propose DDPMVC, a voice conversion
model based on the diffusion model that incorporates a rule-
based diffusion process into the encoder to extract speaker-
independent information, building upon VoiceGrad’s conver-
sion process.Using a diffusion model for both the encoder
and decoder in voice conversion simplifies the process and
reduces training effort. We conducted a comparative analysis
of the quality of conversion accuracy between DDPMVC and
VoiceGrad.

II. DIFFUSION MODEL

A. Score-based generative modeling (SBM)

The score-based generative modeling (SBM) [8] utilizes
scores to efficiently compute maximum likelihood estimates
in high-dimensional data, addressing the challenges associated
with these calculations. Given a likelihood p(x) for an input
variable x, the gradient of the log likelihood log p(x) with
respect to x, referred to as the score ∇x log p(x), is denoted
by the function s(x). The common training approach for SBM
is denoising score matching (DSM) [10], which focuses on
learning scores related to the conditional probability during
perturbation, rather than directly learning the scores. The



denoising score matching equation for SBM is as follows:

LSBM(θ) =

L∑
l=1

wlEx,x̃

[∥∥∥∥x− x̃

σ2
l

− sθ(x̃, σl)

∥∥∥∥2
]
, (1)

where x ∼ p(x), x̃ ∼ N (x, σ2
l I), and wl represents the

weight of the loss for each noise step. This approach utilizes
perturbed distributions, disturbed by adding noise of various
magnitudes to the data distribution, to calculate the score
on these distributions. To align with Eq. (1), sampling is
performed for each perturbed distribution using various noises
through the Langevin Monte Carlo method. This is referred to
as annealed Langevin dynamics [8].

B. Denoising diffusion probabilistic model (DDPM)

The denoising diffusion probabilistic model (DDPM) [7]
consists of a diffusion process that gradually adds noise to
the data x0 and a reverse diffusion process that traces back
the diffusion process to remove the added noise. Viewing
the noise-added data as latent variables, maximum likelihood
estimation is performed as a latent variable model, and data
sampling is conducted by sequentially sampling the latent
variables through the reverse diffusion process. The diffusion
process considers a Markov process that gradually adds noise
to the data x0 and obtains a sequence of noise-added data
{x1,x2, ...,xT }. Specifically, this is expressed by

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), (2)

where q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) and

{β1, ..., βT } are noise parameters that control the variance
magnitude. The reverse diffusion process is a generative
process that starts from pure noise xT ∼ N (xT ;0, I)
and gradually removes noise to generate data. Each step
is normally distributed, and their means and variances are
characterized by a model with parameters θ. This process is
described by

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt), (3)

where pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)). The pa-
rameters of this model are obtained by performing maximum
likelihood estimation. The objective function is given by
Eq. (4), where wt represents the weight at each time step:

L(θ) =

T∑
t=1

wtEx0,ϵ

[
∥ϵt − ϵθ(xt, t)∥2

]
. (4)

With real data x0, x1:T are considered latent variables. Since
this involves maximum likelihood estimation with latent vari-
ables, it is performed by maximizing the variational lower
bound (ELBO) [1] of the log-likelihood.

C. Continuous diffusion model

Song et al. (2021) [11] have extended discrete-time models
(e.g., SBM and DDPM) to continuous time, defining them as
stochastic differential equations (SDE). The continuous-time
expression for SBM, eqrefeq:vesde, is called VE SDE, and
the continuous-time expression for DDPM, eqrefeq:vpsde, is
called VP SDE.

dx =

√
d[σ(t)2]

dt
dw (5)

dx = −1

2
β(t)dt+

√
β(t)dw (6)

Here, w denotes the standard Wiener process or Brownian
motion, and dw represents a normal distribution with a mean
of 0 and a variance of τ in a small time τ . In continuous time,
t is set to t ∈ [0, 1], and the small time is treated as ∆t =
1/N , taking the limit as N → ∞. The difference between
VE SDE and VP SDE lies in the method of adding noise.
In VE SDE, only the noise increases while keeping the input
the same, with the variance diverging. In VP SDE, the input
gradually disappears, and the noise gradually increases to a
certain magnitude, keeping the variance constant. According
to [12], the SDEs for the reverse diffusion processes of SBM
and DDPM are respectively given by Eqs. (7) and (8):

dx =

[
−d[σ(t)2]

dt
∇x log pt(x)

]
dt+

√
d[σ(t)2]

dt
dw, (7)

dx =

[
−1

2
β(t)x− β(t)∇x log pt(x)

]
dt+

√
β(t)dw. (8)

Learning utilizes the conditional probability of the diffusion
process (diffusion kernel) p0t(x(t)|x(0)). The diffusion kernel
can also be expressed as a normal distribution [13]. The
diffusion kernels for VE SDE and for VP SDE are respectively
given by

p0t(x(t)|x(0)) = N (x(t);x(0), [σ(t)2 − σ(0)2]I), (9)

p0t(x(t)|x(0)) = N (x(t);x(0)e−
1
2γ(t), I − Ie−γ(t)), (10)

where γ(t) =
∫ t

0
β(s)ds. By estimating the score using this

diffusion kernel, data can be sampled in the reverse diffusion
process using the estimated score. The objective function is
given by Eq. (11), where λ(t) represents the weighting at each
time step:

(11)
θ∗ = argmin

θ
Et

{
λ(t)Ex(0)Ex(t)|x(0)[

||sθ(x(t), t)−∇x(t) log p0t(x(t)|x(0))||22
]}

.

Sampling for the SDE is performed using the Euler-
Maruyama method (EMM) [14] and predictor-corrector (PC)
sampling [11]. The Euler-Maruyama method is a technique
for obtaining samples by utilizing the score sθ(x, t), estimated
through score matching, in the first-order approximation of the
reverse diffusion process (as in Eqs. (7) and (8)). Additionally,
the PC sampling is a sampling technique composed of two
parts: a predictor, which utilizes a numerical solver for the
discretized reverse diffusion SDE, and a corrector, which
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utilizes a score-based Markov Chain Monte Carlo (MCMC)
method. The algorithm executes the predictor process N times,
and for each execution, the corrector process is executed M
times. The predictor involves the use of reverse diffusion
samplers [11], which are the discretized equations of the
reverse diffusion SDE. The corrector is executed to correct the
results of the predictor. Techniques for the corrector include
sampling by the Langevin Monte Carlo method and annealed
Langevin dynamics.

III. CONVENTIONAL METHOD: VOICEGRAD

In this section, we briefly review VoiceGrad [5], which is
related to our proposed method. VoiceGrad is a VC model
based on SBM and DDPM. It based on SBM learns scores
using Eq. (12) adapted for multiple speakers in DSM, and
performs acoustic feature sampling through iterative updates
of annealed Langevin dynamics (ALD) using the estimated
scores. Additionally, It based on DDPM learns noise using
Eq. (13) adapted for multiple speakers, and performs acoustic
feature sampling through the reverse diffusion [5] using the
estimated noise.

LDSM (θ) =
1

L

L∑
l=1

Ek,x,x̃

[∥∥∥∥x− x̃

σl
− σlsθ(x̃, σl, k)

∥∥∥∥2
]
,

(12)

LDPM (θ) =
1

L

L∑
l=1

Ex0,ϵ

[
∥ϵθ(xl, l, k)− ϵ∥2

]
. (13)

where let k ∼ p(k),x ∼ p(x|k), x̃ ∼ N (x, σ2I). The index
k corresponds to the speaker, and the target speaker is condi-
tioned by k. The acoustic feature used is the mel spectrogram.
The key characteristic of this model is the absence of an
encoder. It is trained on non-parallel data and supports Any-to-
Many conversions. However, during sampling, since the input
speech retains not only phonetic information but also speaker
information, there is a possibility that the speaker characteris-
tics of the source speech may remain after conversion.

IV. PROPOSED METHOD: DDPMVC
In this work, we propose a VC method that utilizes a rule-

based diffusion process as an encoder (diffusion encoder) and
reverse diffusion sampling as a decoder, inspired by the VC
process of VoiceGrad. By employing a rule-based diffusion
process in the encoder, it is expected that it will be possible
to remove the speaker’s information from the input speech,
leaving only the phonetic information. The noise added during
the diffusion process is intended to be mild enough to disrupt
the fine structures that represent the speaker’s information in
the input speech without destroying the phonetic information.
Traditional VC methods using diffusion models [3], [4] remove
the speaker identity from the input speech using a different
technique in the encoder, and then input the speech, which
retains only phonetic information, into a decoder that uses a
diffusion model to produce a voice converted to the target
speaker’s identity. On the other hand, DDPMVC integrates
the encoder and decoder within a unified diffusion model
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Fig. 2. Schematic diagram of DDPMVC.

framework, allowing for holistic optimization and thus, it is
expected to improve conversion accuracy. Furthermore, by
utilizing continuous-time diffusion models, it is believed that
the discretization errors that occur in SBM and DDPM can
be reduced, potentially leading to better conversion accuracy
compared to VoiceGrad. Moreover, we anticipate that the use
of continuous-time diffusion models will reduce the discretiza-
tion errors encountered in SBM and DDPM.

The acoustic features in DDPMVC are 80-dimensional mel-
spectrograms. The model is trained using these features, and
during conversion, it outputs the acoustic features converted
to the target speaker. Additionally, the mel-spectrogram xd,m,
where d is the d-th mel filter bank channel and m is the m-th
frame index, is normalized using the mean ϕd and variance
ξd as xd,m ← xd,m−ϕd

ξd
. The conversion process is shown in

Fig. 2.
The mel-spectrograms xs of the source speech is subjected

to noise addition through a rule-based diffusion process (diffu-
sion encoder) in the encoder. This involves adding noise to the
extent that the content of the speech is somewhat preserved.
The purpose of this is to minimize the possibility of incorrect
exploration during sampling, thereby preventing alterations in
the speech content as much as possible. The diffusion encoder
utilizes the diffusion kernels given by Eqs. (9) and (10).
The speaker-independent mel-spectrograms x(1), to which
noise has been added, undergoes reverse diffusion sampling
of DDPM, VE/VP SDE in the decoder, ultimately yielding the
target speaker’s mel-spectrograms xt. The objective function
for training is defined by Eq. (13) for DDPM and by Eq. (11)
for VE/VP SDE. Finally, the transformed acoustic features are
utilized to generate speech using HiFi-GAN[15].

V. EXPERIMENTS

A. Experiment setup

The dataset utilized for this study was the CMU Arctic voice
corpus [16], which contains recordings of English-speaking in-
dividuals. Four speakers were selected for training, comprising

3



TABLE I
COMPARISON OF MEL CEPSTRAL DISTORTION (MCD) WITH 95% CONFIDENCE INTERVALS BETWEEN VOICEGRAD AND DDPMVC. “PREDICTOR”

INDICATES THAT REVERSE DIFFUSION SAMPLERS ARE USED FOR SAMPLING.

Type SBM-VG DDPM-VG
DDPMVC

DDPM Predictor PC
VE SDE VP SDE VE SDE VP SDE

M→M 7.42± 0.07 7.06± 0.08 6.50± 0.07 7.25± 0.08 6.50± 0.07 7.02± 0.06 6.48± 0.07
F→F 6.71± 0.09 6.19± 0.09 5.86± 0.08 6.40± 0.08 5.90± 0.09 6.64± 0.08 6.11± 0.09
M→F 7.62± 0.09 7.03± 0.11 6.59± 0.08 7.57± 0.10 6.60± 0.08 7.31± 0.07 6.50± 0.08
F→M 7.15± 0.07 6.76± 0.10 6.24± 0.07 6.99± 0.07 6.27± 0.08 6.90± 0.06 6.31± 0.07

All 7.28± 0.05 6.81± 0.06 6.34± 0.05 7.13± 0.06 6.36± 0.05 7.02± 0.04 6.37± 0.04

TABLE II
COMPARISON OF VOICE CONVERSION FOR UNKNOWN SPEAKERS.

Type SBM-VG DDPM-VG
DDPMVC

DDPM Predictor PC
VE SDE VP SDE VE SDE VP SDE

M→M 7.14± 0.09 6.79± 0.10 6.25± 0.10 6.79± 0.10 6.33± 0.10 6.95± 0.08 6.45± 0.10
F→F 6.65± 0.08 6.00± 0.08 5.75± 0.07 6.24± 0.08 5.74± 0.08 6.53± 0.06 6.01± 0.08
M→F 7.40± 0.07 6.73± 0.08 6.26± 0.08 7.27± 0.08 6.30± 0.08 7.07± 0.07 6.38± 0.09
F→M 7.36± 0.08 6.91± 0.11 6.45± 0.09 7.15± 0.10 6.44± 0.10 7.05± 0.07 6.53± 0.09

All 7.14± 0.06 6.60± 0.06 6.18± 0.05 6.86± 0.07 6.20± 0.06 6.90± 0.05 6.34± 0.05

two male speakers (aew, ksp) and two female speakers (clb,
lnh), with 128 utterances for training and 30 utterances for
testing each. Additionally, to assess the accuracy of VC for
arbitrary speakers, 30 utterances from one male speaker (bdl)
and one female speaker (slt) were added for sampling. The
audio data was downsampled to 16 kHz and converted into 32-
dimensional mel cepstrums as acoustic features. The WORLD
vocoder [17] was used for voice analysis and synthesis. The
network architecture utilized for training was based on U-Net
[18], consisting of approximately 44.72 million parameters.

B. Objective evaluation

To assess the effectiveness of DDPMVC’s encoder and
the continuous diffusion model, experiments were conducted
in stages. First, we compared VoiceGrad using SBM (SBM-
VoiceGrad) with VoiceGrad using DDPM (DDPM-VoiceGrad).
The settings for each VoiceGrad model were based on [5],
with SBM having 11 time steps (L = 11) and DDPM having
20 time steps (L = 20). Next, to verify the effectiveness
of DDPMVC’s diffusion encoder, we added it to DDPM-
VoiceGrad. By directly comparing it with DDPM-VoiceGrad,
we could assess the impact of the diffusion encoder. This
additional model is also treated as DDPMVC by definition. It
employed the diffusion process used in VP SDE’s DDPMVC,
with the noise schedule for VP SDE set to β(t) ∈ [0.1, 2].
The clarity of the speech after adding noise was evaluated
using Short-Time Objective Intelligibility (STOI) [19]. It is
an objective evaluation method that takes clean and noisy
speech as input and outputs a score from 0.0 to 1.0, where
a higher STOI indicates better intelligibility. The clarity of all
the noisy test data showed a STOI of 0.52 ± 0.10, indicating
that the noise added was weak enough to preserve some speech
content. Finally, we conducted comparative experiments using
DDPMVC. It was set to N = 1000 time steps, with the
noise schedule for VE SDE set to σ(t) ∈ [0.01, 0.85] and
for VP SDE to β(t) ∈ [0.1, 2]. The sampling methods used
were Reverse diffusion sampling and PC sampling. All these

TABLE III
RESULTS OF SUBJECTIVE EVALUATION.

MOS DMOS
Ground Truth 4.39± 0.18 –

SBM-VG 1.95± 0.15 1.90± 0.13
DDPM-VG 3.12± 0.13 2.98± 0.18
DDPMVC 2.62± 0.15 3.29± 0.16

experiments used the trained speakers’ speech as test data. For
PC sampling, it used reverse diffusion samplers as the predictor
and annealed Langevin dynamics as the corrector.

Additionally, experiments were conducted on unknown
speakers who were not part of the training dataset. The speci-
fications for SBM-VoiceGrad and DDPM-VoiceGrad remained
as previously described. For DDPMVC, both VESDE and
VPSDE were utilized, with Reverse diffusion sampling and
PC sampling used as the sampling methods.

C. Subjective evaluation

In the subjective evaluation experiment, 13 participants
conducted mean opinion score (MOS) tests to assess the
naturalness of the converted speech and degradation mean
opinion score (DMOS) tests to assess their similarity to the tar-
get speakers. The methods compared included Ground Truth,
VoiceGrad using SBM and DDPM, and DDPMVC utilizing
reverse diffusion samplers of VP SDE. For the evaluation of
naturalness, 50 test questions were presented, comprising gen-
erated speech of the trained speakers from the three methods
compared, along with the ground truth. The naturalness of the
sound quality was rated on a 5-point scale (1: Bad, 2: Poor,
3: Fair, 4: Good, 5: Excellent). For the evaluation of speaker
similarity, participants were given 50 test questions to assess
the similarity between the trained speakers, converted using the
three methods, and the target speakers. The similarity between
the target and the converted speech was rated on a 5-point
scale (1: Unlikely, 2: Not very likely, 3: Fairly likely, 4: Likely,
5: Definitely). Participants were asked to evaluate the results
ignoring noise.
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D. Results

Mel cepstral distortion (MCD) was used as an objective
evaluation metric. The patterns of VC conducted were male-
to-male (M→M), female-to-female (F→F), male-to-female
(M→F), and female-to-male (F→M), forming four pairs. All
results were calculated with a 95% confidence interval. First,
when comparing SBM-VoiceGrad (SBM-VG) and DDPM-
VoiceGrad (DDPM-VG), it can be seen from Table I that
DDPM-VoiceGrad outperforms SBM-VoiceGrad in all con-
version patterns. This indicates that DDPM achieves higher
accuracy in voice conversion during the VoiceGrad trans-
formation process. Next, the effectiveness of the diffusion
encoder is examined. According to Table I, comparing DDPM-
VoiceGrad with the version that includes a diffusion encoder
(DDPMVC, DDPM) shows that the latter achieves higher
accuracy in all conversion patterns. This demonstrates the
effectiveness of the diffusion encoder utilized in DDPMVC.
It is thought that the diffusion encoder helps to separate
speaker characteristics to some extent, and by performing
reverse diffusion from a state distanced from the original
speaker, it becomes easier to approach the target speaker. Next,
the results of DDPMVC with continuous diffusion model are
reviewed. When compared to SBM-VoiceGrad, it is evident
that DDPMVC outperforms SBM-VoiceGrad in all sampling
methods. Compared to DDPM-VoiceGrad, DDPMVC utiliz-
ing VESDE showed lower accuracy, but DDPMVC utilizing
VPSDE demonstrated higher accuracy. When compared to
Enc+DDPM-VG, the DDPMVC with VPSDE utilizing PC
sampling outperformed in conversions from male to male and
male to female. However, it showed lower accuracy in female-
to-female, female-to-male conversions, and overall evaluation,
indicating that the effectiveness of the continuous diffusion
model is limited.

The results for unknown speakers are presented in Table II.
DDPM-based DDPMVC showed the best overall performance.
Furthermore, considering DDPMVC as a whole, it is clear that
it surpasses the performance of SBM-VoiceGrad. Compared
to DDPM-VoiceGrad, DDPMVC with VPSDE and DDPMVC
with DDPM showed higher accuracy in each sampling method.
Although the overall MCD values are lower than those for
known speakers, this is because the pre-conversion voices were
already similar to the target voices, resulting in lower initial
MCD values.

The results of the subjective evaluation are shown in Table
III. In terms of naturalness evaluation (MOS), DDPMVC
showed better naturalness compared to SBM-VoiceGrad but
was inferior to DDPM-VoiceGrad. However, in the similarity
evaluation (DMOS), which is more important than naturalness
in VC, DDPMVC outperformed VoiceGrad, indicating that
DDPMVC’s voices are closer to the target voices. These results
are presumably due to the fact that the converted speech
by VoiceGrad remained closely similar to the input speech
with minimal conversion, whereas the converted speech by
DDPMVC underwent a degree of conversion. As a result, more
artifacts occurred with DDPMVC during conversion, which

leads to less naturalness in converted speech by DDPMVC
than VoiceGrad. It is worth noting that some techniques used
in state-of-the-art VC methods such as phoneme posteriorgram
(PPG) [20], [21], self-supervised learning (SSL) [22]–[24]
could improve the overall MOS; our aim is to compare the
accuracy of mel-spectrogram conversion by DDPMVC with a
baseline, VoiceGrad.

VI. CONCLUSIONS

In this paper, we proposed DDPMVC, an Any-to-Many
voice conversion model for non-parallel data that utilizes a
rule-based diffusion process as the encoder and a continuous-
time diffusion model’s reverse diffusion process as a decoder.
Compared to the conventional method VoiceGrad, DDPMVC,
especially with VPSDE, showed superior results in MCD
evaluation. However, in terms of MOS evaluation, it resulted
in an inferior performance compared to VoiceGrad. In the
evaluation of DMOS, DDPMVC achieved closer scores to the
target speech, suggesting that while the conversion became
closer to the target speaker, this might have resulted in a
reduction in naturalness. Going forward, we aim to improve the
model such that it can enhance the naturalness of the converted
speech while maintaining the similarity to the target speaker.
Furthermore, by utilizing methods such as PPG to make the
intermediate representations even more speaker-independent, it
is expected that naturalness can be increased, leading to further
improvements in accuracy.
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