
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Training Deep Neural Networks with HSIC and
Backpropagation

Roshan Birjais Kevin I-Kai Wang Waleed Abdulla
The University of Auckland, New Zealand

E-mail: rsof418@aucklanduni.ac.nz E-mail: kevin.wang@auckland.ac.nz E-mail: w.abdulla@auckland.ac.nz

Abstract—Deep Learning has made significant strides in recent
years, particularly in supervised learning tasks, leading to the
development of numerous architectures aimed at improving
various aspects of model performance. Despite the effectiveness
of backpropagation (BP) and stochastic gradient descent in
training deep networks, these methods are often hindered by
time-intensive computations, exploding and vanishing gradients,
and significant memory overhead. Alternative training strategies
that reduce reliance on global BP are increasingly being explored
to address these limitations. This paper proposes a simple archi-
tecture that integrates Hilbert Schmidt Independence Criterion
(HSIC) layers with linear layers, where the HSIC layers are
trained locally, and the linear layers are optimized using global
BP. This hybrid approach mitigates the drawbacks of BP while
enhancing the model’s ability to learn complex features across
multiple layers. Our proposed model is benchmarked against
existing HSIC-only models across several datasets, including
MNIST, CIFAR-10, and Fashion MNIST. Results demonstrate the
superior performance of our model, in terms of accuracy achieved
and memory used. Additionally, we demonstrate its robustness
and effectiveness when handling noisy data. The code is available
at https://github.com/AreeBeee/HSIC.git

I. INTRODUCTION

In recent years, Deep Learning has emerged as a promi-
nent area of research due to its remarkable success as a
machine learning technique, particularly in supervised learning
tasks. Numerous upgraded versions of architectures have been
developed, each striving to improve upon its predecessors
in various aspects. Discovering efficient methods to train a
model has been a central concern for every researcher in
this domain. Although training a model using backpropagation
and stochastic gradient descent, or its variants, is effective, it
proves to be highly time-consuming, particularly when applied
to deep networks. Additionally, challenges such as exploding
gradients, vanishing gradients, and the need for update locking
further compound the issue. Figure 1 illustrates how training
commences with BP which has two passes. In forward propa-
gation, input data is processed sequentially through successive
network layers to generate output. This output is subsequently
employed to evaluate the loss function, which quantifies the
divergence between the predicted outputs and the actual target
values. In the subsequent backward propagation phase, the
loss function’s gradients with respect to each parameter are
calculated using the chain rule, a process streamlined by auto-
matic differentiation in modern computational frameworks. BP
is the most conventional method used in supervised learning.
However, the limitations of BP such as vanishing gradients,

Fig. 1. Illustration of the forward pass and backward pass in a neural network.
This process enables the network to learn from the training data and improve
its performance over time.

getting stuck in local minima especially when the network is
deep, and also the memory overhead are the key problems.

A need to find an alternative that eliminates the necessity
for global BP while maintaining efficiency is required. This
involves focusing on information approximation, where only
relevant information passes through the layers initially. A
significant advancement in this direction was demonstrated
by Naftali and Noga, highlighting the information-theoretic
tradeoff between compression and relevance and demonstrating
that the quantification of Deep Neural Networks (DNNs)
can be achieved through the mutual information between the
layers and the inputs and outputs.[1] Mutual information[2]
is used to find the dependence between two random variables
x and y, and can be expressed using Shannon’s entropy as
I(x, y) = H(y) − H(y|x) where H(y|x) is the conditional
entropy. Considering x as the representation of the input and
y being the label in a network, the mutual information offers a
training objective that engages with x directly without involv-
ing BP through cross-entropy. Calculating mutual information
is difficult [3], Ma et al [4] substituted mutual information with
the Hilbert Schmidt Information Criterion (HSIC) for training
the model without using backpropagation and cross-entropy
loss. The HSIC layers help to mitigate the limitations of BP
and maintain the performance of the network. It addresses the
issues of exploding and vanishing gradients, thereby enabling
the training of very deep networks without the need for
skip connections. Additionally, it eliminates the necessity for
symmetric feedback or update locking. However, using HSIC
increases the memory overhead. Calculating HSIC involves
computing kernel matrices with a complexity of O(n2), which
can be intensive for large datasets. In contrast, backpropagation

has a complexity of O(nm), where n is the number of samples
and m is the number of parameters, making it more scalable for
larger datasets. Also, the indirect nature of HSIC in promoting
dependence can lead to slower convergence rates compared to
direct optimization of the loss function using backpropagation.
We introduce a model where after every HSIC trained layer,
a fully connected layer is introduced. These alternate linear
layers are trained using global BP. Training done in this way
allows a deep network to integrate features learned by lower
layers into more complex ones in higher layers. This is evident
from the enhanced accuracy of the model.

Deep neural networks trained on large, well-annotated
datasets have achieved remarkable results in image classi-
fication and other tasks. However, the collection of such
high-quality datasets can be both time-consuming and costly,
leading to a growing interest in leveraging larger but noisier
datasets that are more readily available. In this paper, we
have evaluated our model for robustness and noise adaptation,
showing how well the model maintains its performance under
noisy conditions, demonstrating its resilience and reliability..
In Section 2, we provide background information, detailing
the techniques employed to design the architecture. Section 3
delves into the architecture’s structure and operation, offering a
comprehensive overview of its components and functionalities.
Finally, in Section 4, we present the results obtained, providing
a detailed analysis of its performance and effectiveness. The
contributions of this research are as follows:

• This research introduces a novel approach that combines
the Hilbert Schmidt Independence Criterion (HSIC) with-
out backpropagation (BP) and traditional BP for training
deep neural networks (DNNs). The proposed architec-
ture demonstrates similar performance to existing models
while significantly reducing memory overhead.

• The network trained using this approach exhibits im-
proved resilience to noise. The model has been tested for
robustness and noise adaptation, highlighting its effective-
ness in maintaining performance under noisy conditions.

II. BACKGROUND

In this section, we present the foundational background,
outlining the various techniques utilized in the design of the
architecture.

A. Relative Entropy and Mutual Information

The entropy of a random variable is the uncertainty associ-
ated with it, representing the average amount of information
needed to describe it, and the measure of distance between
two distributions p(x) and p(y) is the relative entropy. Mutual
information represents a specific instance within it. Mutual
information serves as a comprehensive metric for gauging
the relationship between two random variables. In a discrete
domain, it quantifies the dependence between two random
variables X and Y.

B. Hilbert Schmidt Independence Criterion

HSIC is a way to calculate mutual information between
two distributions. Consider F , a Reproducing Kernel Hilbert
Space (RKHS) of functions mapping from X to R, where
X is a separable metric space, and R represents the set
of real numbers. For any two points x and x′ in X , we
can associate elements ϕ(x) and ϕ(x′) in F (referred to as
feature mapping) such that the associated reproducing F kernel
k(x, x′) = ⟨ϕ(x), ϕ(x′)⟩.

In Reproducing Kernel Hilbert Space (RKHS), HSIC can
be understood as a measure of the distance between the
embeddings of the joint distribution PXY and the product
of the marginal distributions PXPY , where X and Y are the
random variables. When characteristic RKHSs are employed,
the independence of the random variables can be inferred
by checking if the value of HSIC is zero. Compared to
other traditional independence measures, HSIC offers multiple
advantages, including its ease of computation, quick conver-
gence, and minimal estimation bias when working with limited
data samples. HSIC-based learning methods revolve around the
concept of leveraging HSIC to gauge the correlation or linkage
between the various elements being analyzed, like the inputs
and outputs. The objective is to optimize the solutions by either
increasing or decreasing these associations. Let X and Y be
the random variables, k(·, ·) and l(·, ·) the kernel functions,
then

HSIC(X,Y) = E(x,x′,y,y′)[k(x, x
′)l(y, y′)]

+ E(x,x′)[k(x, x
′)] · E(y,y′)[l(y, y

′)]

− 2E(x,y)

[
E(x′)[k(x, x

′)] · Ey[l(y, y
′)]
] (1)

Where E(x,x′,y,y′) denote expectation over independent pairs
(x, y) and x′, y′. A kernel function transforms the input
data into a feature space with a high dimension, where the
statistical correlation between two random variables can be
more conveniently assessed.

III. METHODOLOGY

In this section, we introduce the proposed architecture. As
shown in Figure 2, the proposed architecture consists of one or
many sub-networks. Generally, the sub-network (SN) consists
of one or more HSIC layers followed by one or more linear
layers. The number of SNs used depends on the problem, just
like in any other neural network; the complexity of the task
and data, modelling goals like generalisation and overfitting
decide on what and how many layers are needed.

A. Datasets

This section contains information about the datasets used for
the experimentation. 1) The MNIST dataset is a widely used
benchmark in the field of Deep learning, consisting of 70,000
grayscale images of handwritten digits from 0 to 9, each sized
at 28x28 pixels. It is split into 60,000 training images and
10,000 testing images. 2) The MNIST Fashion dataset serves
as a more challenging alternative to MNIST, containing 70,000

2

Fig. 2. Block diagram of the network which consists of one or more sub-
networks depending the requirements of the data.

grayscale images of 10 different clothing items, also divided
into a training set of 60,000 images and a test set of 10,000
images. 3) CIFAR-10 is another popular dataset comprising
60,000 32x32 color images in 10 classes, with 50,000 images
for training and 10,000 for testing.

B. Proposed Architecture

In this research, we proposed a simple deep-learning archi-
tecture that combines HSIC layers with linear layers trained
via BP. In Figure 3, represents the architecture, which is made
up of sub-networks. We use linear layers with ReLu as the
activation functions and softmax for the last layer. Each sub-
network consists of one HSIC layer and one linear layer. It
is better understood from Algorithm 1. We have tested the
model on various datasets and have observed that the model
performs better than the architecture trained using HSIC only
found in the literature. Having a linear layer after every HSIC
layer allows for capturing complex relationships in the data and
transforming the features extracted by the HSIC layer into a
higher-dimensional space, potentially enhancing the model’s
ability to learn and discriminate between different patterns in
the data.

Fig. 3. Illustration the proposed network architecture in which the HSIC
layers are trained without BP and linear layers are trained using BP.

Consider a neural network comprising L hidden layers, for
the layers, denoted as Ti(·) : Rdi−1 → Rdi , resulting in hidden
representations Zi ∈ Rm×di , where i ∈ {1, . . . , L}, and m
represents the batch size, then

Zi = arg minZi
(nHSIC(Zi, X)− βnHSIC(Zi, Y)) (2)

The input data X ∈ Rm×dx and labels Y ∈ Rm×dy ,
where m denotes the batch size, i ranges from 0 to L,

and L represents the total number of hidden layers. The
dimensions dx and dy correspond to the input and output
variables, respectively. The parameter β modulates the trade-
off between the IB objectives that aims to compress input data
while retaining as much relevant information as possible for
predicting the output and nHSIC is given for each term is

nHSIC(Zi, X) = tr(KeZiKeX) (3)

nHSIC(Zi, Y) = tr(KeZiKeY) (4)

SN1 The above equations suggest that the optimal hidden
representation Zi achieves a delicate equilibrium between
independence from irrelevant input details and association with
the output. Ke is the centered kernel matrix derived from
the original kernel matrix by removing the mean effects. The
convergence of equation (3) ideally preserves the essential
information required for label prediction while eliminating
extraneous details that might lead to overfitting. The features
derived from the HSIC layers serve as input to the BP-led
layers. As the data traverses through the network comprising
L layers, the final output is produced.

Algorithm 1 Training an MLP with HSIC and Backpropaga-
tion

1: Input: X (input data), Y (labels), n (number of sam-
ples), m (batch size), L (number of layers), α (learning
rate), β (HSIC regularization parameter), Ti−1 and Fi

are parametrized by {θi | Wi, bi} and {ϕi | Wi, bi}
respectively.

2: Initialize: θi (HSIC layer parameters), ϕi (BP layer pa-
rameters) for i ∈ {1, . . . , L}

3: for j ∈ {1, . . . , n/m} do
4: Z0 ← Xj

5: for i ∈ {1, . . . , L} do
6: if i ∈ HSIC Layers then
7: Zi ← Ti−1(Zi−1)
8: gi ← ∇θi(nHSIC(Zi, Xj) − β ×

nHSIC(Zi, Yj))
9: θi ← θi − αgi

10: else
11: Vi ← Fi(Zi−1)
12: hi ← ∇ϕi(Loss(Vi, Yj))
13: ϕi ← ϕi − αhi

14: Zi ← Vi

15: end if
16: end for
17: end for

IV. RESULTS

The performance of both models was assessed across several
datasets, including MNIST, CIFAR-10, and Fashion MNIST.
We evaluated and compared the results with those reported in
[4] as shown in Figure 4. The observed accuracies from the
proposed model highlight its effectiveness when compared to

3

models where layers are trained exclusively using HSIC. The
testing results demonstrate that the proposed architecture out-
performs the HSIC-only model, suggesting that incorporating
linear layers between HSIC layers enhances the model’s ability
to learn and capture essential features for accurate prediction.
This indicates that the integration of linear layers contributes
to a more robust feature extraction process, ultimately leading
to improved performance.

(a) (b)

(c) (d)

(e) (f)
Fig. 4. Performance evaluation comparison between HSIC-trained architec-
ture and our proposed method. The plots (a), (c), (e) are taken from [4]. Plots
(b), (d), and (f) are the plots obtained from the proposed method. The first
row shows the result for MNIST, the second row for FashionMNIST, and the
third row for CIFAR10.

In addition to achieving high accuracy, computational ef-
ficiency is paramount for any model. We conducted a com-
parative analysis of architectures based on several key metrics
number of layers, and nodes per layer, as detailed in Table I.
The proposed model comprises two HSIC layers and two linear
layers, structured as 714-512-256-128-10. This configuration
is more compact compared to the 784-256-256-256-256-256-
10 architecture described in [4]. Despite using only 3 hidden

layers with fewer nodes per layer, our model achieves similar
accuracy, indicating its efficiency in terms of memory usage.

TABLE I
COMPARATIVE ANALYSIS OF TWO ARCHITECTURES, DETAILING THE

NUMBER OF LAYERS AND NODES USED IN EACH MODEL.

Method Hidden Layers Nodes epochs

HSIC [4] 5 714-256-256-256-256-256-10 6

Proposed model 3 714-512-256-128-10 6

A. Experimental results with Noise

The presence of noise is a well-known issue that signifi-
cantly impacts data quality, particularly in classification tasks
[5], [6]. In various application domains such as medical image
processing [7], speech recognition [8], and stock market analy-
sis [9], classification accuracy is a crucial metric. Deep neural
networks are usually trained through supervised learning with
large, meticulously curated datasets that are free from noise.

Fig. 5. Images before and after the Gaussian noise is added to it (standard
deviation = 0.05).

However, the requirement for such datasets limits the range
of problems that can be tackled because in real life, getting
data that is clean is not most of the time true. This has resulted
in a surge of deep learning studies focused on the same tasks
using these familiar datasets. We utilized the MNIST dataset
and introduced Gaussian noise to the data. Figure 5 shows the
image before and after the noise is added to the images.

This approach allowed us to assess the performance of our
model under conditions where data is not perfectly clean,
providing insights into its robustness and generalisation. By
simulating real-world scenarios where noise may be present,
we aimed to better understand the model’s effectiveness in
practical applications.

The results indicate that our model exhibits greater ro-
bustness. This enhanced resilience suggests that the model
is capable of maintaining high performance even when con-
fronted with noisy or imperfect data, which is critical for its
deployment in real-world environments where data quality can
vary. Table II indicates that there is minimal difference in the
model’s accuracy when trained and tested on noisy data. This

4

TABLE II
PERFORMANCE COMPARISON OF PROPOSED METHOD WHEN BOTH

TRAINING AND TESTING DATA IS NOISY.

Std = 0.05 Std = 0.5 Std = 0.8

Train Accuracy 96.30 93.98 91.31

Test Accuracy 95.97 93.22 91.28

demonstrates the robustness of our model, suggesting that it
maintains performance even under challenging conditions.

We also evaluated our model by testing it with noisy test
data while using clean data for training. The results revealed
minimal differences in accuracy, indicating that the model re-
mains resilient and performs well even when faced with noisy
data during testing as shown in Table III. Hence, checking
the model for both: 1) Evaluating noise adaptation: Train on
noisy data and test on noisy data. 2) Robustness testing: Train
on clean data and test on noisy data.

TABLE III
PERFORMANCE EVALUATION OF PROPOSED METHOD WHEN ONLY TEST

DATA IS NOISY DATA.

Std = 0.5

Train Accuracy 96.21

Test Accuracy 92.61

V. CONCLUSION

In this research, we propose a simple deep learning archi-
tecture that combines Hilbert Schmidt Information Criterion
layers with linear layers trained via backpropagation. Our ap-
proach addresses several limitations of traditional BP training,
such as the challenges posed by vanishing and exploding
gradients, and the substantial memory overhead associated
with deep networks. By integrating linear layers between HSIC
layers, our architecture effectively leverages the benefits of
local training and global optimization, resulting in improved
model performance.

The experimental results across various datasets, including
MNIST, CIFAR-10, and Fashion MNIST, demonstrate that
our model outperforms the HSIC-only approach, particularly
in handling noisy data. This indicates that the addition of
linear layers enhances the network’s ability to learn and retain
crucial features, contributing to more accurate predictions.
Furthermore, our architecture achieves comparable accuracy to
existing models but with a more compact and memory-efficient
design, highlighting its practical advantages in resource-
constrained environments. Future research could delve deeper
into developing training techniques that completely eliminate
the need for backpropagation, potentially leading to more
efficient and scalable neural network architectures.

REFERENCES

[1] N. Tishby and N. Zaslavsky, “Deep learning and the information bot-
tleneck principle,” in 2015 IEEE Information Theory Workshop (ITW),
pp. 1–5, 2015.

[2] P. Czyż, F. Grabowski, J. Vogt, N. Beerenwinkel, and A. Marx, “Beyond
normal: On the evaluation of mutual information estimators,” Advances
in Neural Information Processing Systems, vol. 36, 2024.

[3] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational
information bottleneck,” CoRR, vol. abs/1612.00410, 2016.

[4] W.-D. K. Ma, J. Lewis, and W. B. Kleijn, “The hsic bottleneck: Deep
learning without back-propagation,” in Proceedings of the AAAI confer-
ence on artificial intelligence, vol. 34, pp. 5085–5092, 2020.

[5] H. Khan, H. Liu, and C. Liu, “Missing label imputation through inception-
based semi-supervised ensemble learning,” Advances in Computational
Intelligence, vol. 2, no. 1, p. 10, 2022.

[6] Z. Zhu, T. Liu, and Y. Liu, “A second-order approach to learning
with instance-dependent label noise,” in Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 10113–10123,
2021.

[7] O. Albahri, A. Zaidan, A. Albahri, B. Zaidan, K. H. Abdulkareem,
Z. Al-Qaysi, A. Alamoodi, A. Aleesa, M. Chyad, R. Alesa, et al.,
“Systematic review of artificial intelligence techniques in the detection
and classification of covid-19 medical images in terms of evaluation
and benchmarking: Taxonomy analysis, challenges, future solutions and
methodological aspects,” Journal of infection and public health, vol. 13,
no. 10, pp. 1381–1396, 2020.

[8] T. Nakatani, “Improving transformer-based end-to-end speech recognition
with connectionist temporal classification and language model integra-
tion,” in proc. INTERSPEECH, vol. 2019, pp. 1408–1412, 2019.

[9] M. Nabipour, P. Nayyeri, H. Jabani, S. Shahab, and A. Mosavi, “Predicting
stock market trends using machine learning and deep learning algorithms
via continuous and binary data; a comparative analysis,” Ieee Access,
vol. 8, pp. 150199–150212, 2020.

5

