
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

An Investigation on the Speech Recovery from EEG
Signals Using Transformer

Tomoaki MIZUNO∗ Takuya KISHIDA† Natsue YOSHIMURA‡ Toru NAKASHIKA∗
∗ The University of Electro-Communications, Tokyo, Japan

† Aichi Shukutoku University, Aichi, Japan
‡ Tokyo Institute of Technology, Kanagawa, Japan

Abstract—In recent years, brain-machine interfaces (BMI)
have been researched to enable people who cannot physically
speak or who are placed in situations where they cannot speak to
engage in speech communication. However, synthesizing complete
speech from ElectroEncephaloGraphy (EEG) signals remains a
challenging task. In this paper, reconstructing speech from EEG
signals, a Transformer-based model has been developed on the
basis of data from listening to the speeches of two people, one
male and one female. The objective of this study is to investigate
the potential to reconstruct speech from EEG signals, including
the characteristics of the corresponding speaker’s speech and the
potential to reconstruct speeches containing the corresponding
linguistic content, by training a single model on both male and
female speeches. Our findings reveal that our model can generate
two distinctly different speakers’ speeches from the EEG signals
of the two speakers’ speeches. Additionally, the EEG signals
appear to contain information about speaker characteristics that
can be reconstructed from the EEG signals.

I. INTRODUCTION

Brain-Computer Interface (BCI) refers to computer tech-
nology that has the potential to enable people to operate a
computer simply by thinking. Research on reading language
information from brain activity and synthesizing it as speech
is also advancing and could have significant implications for
enabling those who are unable to speak due to illness or in
environments where speech is not possible, such as underwater,
or similar conditions, to communicate vocally.

BCI can be broadly classified into two types (invasive
and noninvasive) depending on the method used to measure
brain activity. Invasive methods involve the direct implantation
of electrodes into the brain, providing high-resolution and
precise data. This technique can directly measure the activity
of specific neurons in the brain, resulting in minimal signal
noise and very short temporal delays. However, it requires
surgical procedures, which come with risks such as infections
and inflammation. Non-invasive methods, on the other hand,
allow for the measurement of brain activity without surgery,
thereby posing relatively lower risks. These methods can
measure electrical activity and changes in blood flow in the
brain, but they offer lower resolution compared to invasive
methods. Electrocorticography (ECoG), which is measured by
placing electrodes on the surface of the brain in the invasive
method, is used as a signal related to brain activity that enables
highly accurate speech synthesis [1], [2]. Previous studies
have successfully synthesized intelligible speech by combining

brain activity and mouth movements, but complete speech has
not yet been synthesized with signals without mouth movement
information. In addition, the invasive type requires surgery
to attach electrodes to the surface of the brain, which is
costly.In contrast, electroencephalography (EEG) is a non-
invasive method that measures electrical signals by placing
electrodes on the scalp, making it a more convenient way to
measure brain activity. However, synthesizing complete speech
sounds with noninvasive EEG is a more challenging task than
with ECoG. Nevertheless, a study synthesized two short vowels
from EEG with high intelligibility, using a neural network
introduced to infer phonetic features from EEG [3]. The
structure of the neural network is relatively straightforward,
which suggests that it may be a viable approach to infer speech
features from EEG. It also suggests the potential for employing
more complex network structures to infer speech features from
EEG.

To propose this possibility, we attempted to synthesize
speech from a single participant’s EEG when listening to
a single speaker’s speech using a diffusion model first. We
trained Diffwave [4], a vocoder using a diffusion model,
by modifying the input to an EEG converted from a mel-
spectrogram to a two-dimensional signal and assessed the
quality of the synthesized speech. The results showed that most
segments had only small noises and only one tone was mixed
in a few times within the segment. The model possibly may
not have handled time-series signals as well as it could have
done.

Given that the auditory system is generally hierarchically or-
ganized, that low-level acoustic features (frequency, intensity,
etc.) are processed faster than higher-order semantic process-
ing [5], [6], and that the electrical signals generated from these
features are collected using low spatial resolution methods, it
seems that not all phonemes in speech are expressed as EEG
while preserving their order. Additionally, although we refer to
the EEG of one person when listening to the speech of a single
speaker, it is important to note that individual differences in
EEG expression do exist, such as the difference in reaction
time between the elderly and the young [7]. We believe that
a model that can encompass these characteristics would be
beneficial. In this study, we focus on the Transformer [8].

Transformer, which is a deep learning model applied to
the speech field, has been successfully used to synthesize



speech with higher quality than conventional neural networks
in speech synthesis and voice conversion [9]. By using a deep
learning model with Transformer to infer speech features from
EEG, speech more complex than two types of short vowels
may be possible to generate. In this study, we attempt to infer
speech features from EEG using a deep learning model with
Transformer. We use the speech of two speakers and the EEG
of a person who listened to the speakers as training data, and
then we perform inference to reconstruct the speech from the
EEG. Another of our goal is to see if the difference in speaker
characteristics between the two speakers can be recovered. We
explore the possibility to recover the differences in speaker
identity between the two speakers by learning from the two
speakers’ speeches and the speeches of the people who heard
them and by performing inference to reconstruct speeches.

II. ARCHITECTURE SELECTION

Voice conversion technology generates speech by convert-
ing one person’s speech into another person’s speech while
retaining the linguistic information and speaking style of the
speech. Since EEG is also a time-series signal, we thought that
a deep learning model based on the voice conversion technique
could be used to infer features that represent the speech from
EEG. Transformer is an architecture used in deep learning
models based onvoice conversion technology and has also been
extensively applied beyond voice conversion technology.

Transformer excels at handling sequential data and capturing
long-range dependencies. These are particularly effective when
input data is transformed into dense vector representations that
encapsulate semantic information. Positional encoding is added
to maintain the order of data within the sequence. The attention
mechanisms in Transformer enable the model to weigh the
significance of different elements in the sequence, thereby
enhancing contextual understanding.

This paper posits that the strengths of Transformer can be
leveraged to infer complex patterns from sequential data. On
the basis of these strengths, Transformer-based models used
in voice conversion techniques are used to synthesize speech
from EEG.

A. Transformer-based Text-To-Speech system

Fig. 1 shows the Transformer-based Text-To-Speech(TTS)
system [9] and the Voice Transformer Network, which is a
voice conversion system based on the TTS system network
[10], which is a voice conversion system based on the TTS
system.

The Transformer model consists of an encoder and a de-
coder, and is used to find the mapping from a source sequence
x1:n = (x1, ..., xn) to a target sequence y1:m = (y1, ..., ym).
The lengths of the two sequences do not need to be the same.

The encoder Enc maps the source sequence x1:n =
(x1, ..., xn) to a sequence of hidden states h1:n = (h1, ..., hn).

h1:n = Enc (x1:n) (1)
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Fig. 1. Architecture of Transformer-based Text-To-Speech system and Voice
Transformer Network.

From the hidden states h1:n and the decoder’s previous hidden
state qt−1, we obtain query, key and value.

Q = WQqt−1 (2)
K = WKh1:n (3)
V = WV h1:n (4)

where WQ, WK , WV ∈ Rdmodel×dmodel are a learnable weight
matrix. dmodel is the input dimension. The weighted sum of
these hidden states is the context vector ct.

ct =

n∑
k=1

a
(n)
t hk (5)

Here, the attention weights αt are calculated using the
hidden states h1:n and the decoder’s previous hidden state
qt−1 through an attention mechanism [11], [12]. The attention
weights, represented by the vector αt = (a

(1)
t , · · · , a(n)t ),

indicate which encoder hidden states the decoder should focus
on to determine the output at time t. Each attention probability
a
(k)
t can be thought of as the importance of the hidden

representation hk at the tth time step.

at = attention
(
qt−1,h1:n

)
= softmax(

QKT

√
dk

)V (6)

dk is the dimensionality of the key. Scaling by
√
dk is used to

stabilize the gradient during training.
In practice, multi-head attention is often employed, which

involves performing the above computation multiple times in
parallel with different learned projections. For h heads:

multi-head
(
qt−1,h1:n

)
= (head1, ..., headh)W

O (7)

where headi = Attention(W i
Qqt−1,W

i
Kh1:n,W

i
V h1:n) (8)

and WO ∈ Rdmodel×dmodel is a learnable weight matrix.
The decoder Dec takes the context vector ct, the previously

generated output sequence y1:t−1 = (y1, ..., yt−1), and the
previous decoder hidden state as inputs and decodes the
decoder hidden state qt and yt.

yt, qt = Dec
(
y1:t−1, qt−1, ct

)
(9)
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Fig. 2. Overview of the model for inferring speech from EEG. EEG is
shown as a two-dimensional signal of channel and time, and the voltage is
normalized.

B. Voice Transformer Network: Transformer-based Voice Con-
version System

A Voice Transformer Network is proposed as a voice
conversion system based on a Transformer-based TTS sys-
tem [10]. It adapts by passing a linear projection to convert
the input from text to acoustic features (in this case, log-scale
mel-spectrograms). Otherwise, the system is identical to the
Transformer-based TTS system.

III. METHOD

Since EEG is also a time-series signal, we propose using
the Voice Transformer Network to reconstruct speech from
EEG. The speech Transformer Network is a model in which
the input is replaced by acoustic features. The transformation
process is shown in Fig. 2. This model consists of a Voice
Transformer Network with 63 channels of EEG input and
Parallel WaveGAN [14] as a vocoder, which is trained in
an End-2-End fashion. Note that the Parallel WaveGAN has
already been trained and the parameters of Parallel WaveGAN
are not changed during training.

The following describes the dataset and model for the speech
synthesis experiments from EEG using the Voice Transformer
Network.

A. EEG measurements and dataset preparation

The EEG during Japanese speech listening was measured
and processed to create a dataset of the EEG during speech
listening. The speech sounds are the ATR 503 sentences [15]
uttered by a male speaker (MMY) and a female speaker (FTK)
respectively.

To create the EEG and speech dataset, the EEG was mea-
sured while the participants listened to the speech uttered by
the two speakers. The Biosemi ActiveTwo system (Biosemi)
was used for the measurement. The electrode configuration
of the participants was 64 ch, based on the International
10–20 system. The EEG was sampled at 8,192 Hz, bandpass
filtered at 1-40 Hz, and downsampled to 1,024 Hz to reduce
computational cost. Then, independent component analysis
(ICA) was applied to remove the components caused by eye
movements. The EEG electrode channel TP8, from which the
eye movement-related component could not be removed, was
not used in the analysis. Then, all data were normalized. To
synchronize the 63 ch EEGs created by the above procedure
with the audio, we cut the EEG from the trigger of the start of
playback to 1024 samples (1 second) before the trigger of the
start of playback of the next audio and created 503 EEG sets
corresponding to the 503 sentences of audio. When creating
the training sets, the sampling rate of the speech was changed
to 16 kHz. The created dataset was divided into training data,
validation data, and test data in the ratio of 480:12:11. MMY
and FTK datasets were created and then merged, resulting in
960 sentences of training data, 24 sentences of validation data,
and 22 sentences of test data in the end.

B. Model details

The parameters of the Voice Transformer Network1 were
used mostly as is. The input dimension was changed to use
EEG as input. Also, this implementation did not include
Guided Attention [16], but we used guided attention to reduce
the risk of using brain wave information from periods when
the subject was not listening during the speech reconstruction.
Guided Attention means that the attention matrix A is approx-
imately diagonal. The attention matrix A is a list of attention
weights at at each time step. The loss function is defined as
follows

Latt(A) = Ent[AntWnt] (10)

Wnt = 1− exp

(
− (n/N − t/T )2

2g2

)
(11)

Here, n is the position of a character or word in the text, N is
the total length of the text, t is the index of the time step, and
T is the total length of the audio. Ant refers to the entry of the
attention matrix A, representing the correspondence between
a specific text position n and a time step t. It indicates the
weight of the attention that the text position n should give
to the audio at time t, with higher values indicating stronger
correlations and lower values indicating weaker correlations.
Wnt is an element of the weight matrix used to calculate the

1https://github.com/unilight/seq2seq-vc/tree/main/egs/arctic/vc1



guided attention loss, as defined in Equation (6). The parameter
g controls the variance of the Gaussian function, adjusting the
penalty strength on the basis of the distance between the text
position n and the time step t. In this experiment, we set g =
0.4. For training, we designed and utilized the overall loss
function as follows, incorporating the L1-based reconstruction
loss LL1 used in the existing VTN, the binary cross-entropy
loss LBCE to enable the model to learn the timing to stop
decoding, and the aforementioned guided attention loss.

L = LL1 + αLBCE + βLatt (12)

Here, α and β are the weight applied to the binary cross-
entropy loss and the guided attention loss. In this experiment,
α and β were set to 10 and 1 respectively.

For Parallel WaveGAN [14] used as vocoder, a two-speaker
model of MMY and FTK was trained and used for the
experiment. The sampling rate was 16 kHz, and the default
parameters of Parallel WaveGan 2 were used otherwise.

C. Validation Items

In conducting the experiments, the Voice Transformer Net-
work was trained under the above conditions, and the following
items were verified.

• Synthesis quality when inferring speech from EEG train-
ing data

• Synthesis quality when inferring speech from EEG test
data

To investigate these, we investigated the following indices
of speech inferred from EEG training data to examine the
linguistic features of the speech.

• Word Error Rate (WER)
• Character Error Rate (CER)
• BertScore [17]

For WER and CER, a smaller value indicates fewer errors. The
training data and ground-truth speech were recognized by the
Large-v3 model of the speech recognition model Whisper [18]
and compared with the text data of the original speech. The
BertScore is an index that calculates the similarity of text
using BERT, with higher values indicating greater similarity.
For the PBERT, RBERT, and F1BERT values associated with
BertScore, Precision (PBERT) is the percentage of predicted
correct answers that were actually correct, Recall (RBERT) is
the percentage of actual correct answers that were correctly
predicted, and F1 score (F1BERT) is the harmonic mean of
Precision and Recall.

We also extracted the following data, computed frame by
frame, to investigate the representation of talkativeness from
the test data and the speech inferred from the ground-truth
speech.

• Pitch (F0)
• 1st and 2nd formants (F1, F2)

We use support vector machines (SVM) to verify whether
speaker information is reflected in the generated speech. A

2https://github.com/kan-bayashi/ParallelWaveGAN

TABLE I
WER, CER, AND BERTSCORE OF THE GENERATED SPEECH FROM THE

TRAINING DATA.

WER
(↓)

CER
(↓)

BertScore(↑)
PBERT RBERT F1BERT

Train 0.0976 0.0462 0.956 0.954 0.955
Test 2.16 1.13 0.622 0.629 0.625

TABLE II
MEAN AND VARIANCE OF F0, F1, AND F2 OF THE GENERATED MMY

SPEECH FROM THE TEST DATA AND THE GROUND TRUTH SPEECH.

MMY F0[Hz] F1[Hz] F2[Hz]
Mean Std Dev Mean Std Dev Mean Std Dev

GT 154.6 38.17 773.6 483.2 1898 495.2
Predict 221.2 36.72 793.5 428.0 1940 455.0

TABLE III
MEAN AND VARIANCE OF F0, F1, AND F2 OF THE GENERATED FTK

SPEECH FROM THE TEST DATA AND THE GROUND TRUTH SPEECH

FTK F0[Hz] F1[Hz] F2[Hz]
Mean Std Dev Mean Std Dev Mean Std Dev

GT 236.2 51.90 759.5 393.9 2010 498.6
Predict 293.1 36.72 730.8 370.2 2019 441.4

SVM was trained to calculate mel-frequency cepstral coeffi-
cients (MFCC) for each frame of 20 channels from the ground-
truth speech to create a speaker identification model (94%
accuracy). We use the SVM model to identify whether a male
or female speech is used for the generated speech and to verify
the accuracy.

IV. RESULTS AND DISCUSSION

Fig. 3 compares the mel-spectrograms of the ground-truth
speech and the speech generated from the training data,
and Fig.4 compares the mel-spectrograms of the ground-truth
speech and the speech generated from the test data. The results
are shown in Table reftext for the values of WER, CER, and
BertScore for the speech synthesized from the EEG that was
used for the training data, relative to the ground-truth speech.

The mean values and variances of F0, F1, and F2 calculated
for every frame for all speech are shown in Table.II and
Table.III. These two tables show the values for ground-truth
(GT) speech and generated speech (Predict) for MMY and
FTK respectively.

First, comparing the mel-spectrogram in Fig. 3, the speech
generated from the training data clearly has a similar overall
shape, with many of the wave timings and silence areas similar
to the ground-truth speech. However, the speech generated
from the test data in the mel-spectrogram in Fig. 4 differs from
the truth speech in terms of the timing and characteristics of
the silence. From Table I, the WER and CER values for speech
inferred from the training data were 0.0976 and 0.0462, and
the BertScore value was about 0.955 for both PBERT, RBERT
and F1BERT. From these values and the results in Fig. 3 and
Fig. 4, we can say that the speech inferred from the training
data is synthesized with a high degree of accuracy.

We attempted to perform the same experiment on speech
generated from test EEG data, but the WER and CER values



MMY FTK

GT

Predict

0 1 2 3 4 5 6
Time [s]

0

512

1024

2048

4096

8192
Fr

eq
ue

nc
y 

[H
z]

0 1 2 3 4 5 6
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

0 1 2 3 4 5 6
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

0 1 2 3 4 5 6
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Fig. 3. Comparison of mel-spectrograms of ground-truth speech and speech generated from training data.

MMY FTK

GT

Predict

0 1 2 3 4 5 6 7 8 9
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

0 1 2 3 4 5 6 7 8 9
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

0 1 2 3 4 5 6 7 8 9
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

0 1 2 3 4 5 6 7 8 9
Time [s]

0

512

1024

2048

4096

8192

Fr
eq

ue
nc

y 
[H

z]

-80 dB

-70 dB

-60 dB

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Fig. 4. Comparison of mel-spectrograms of ground-truth speech and speech generated from test data.

exceeded 1, and the BertScore value was about 0.625 for both
PBERT, RBERT and F1BERT. This can be described as having
significantly low accuracy. In addition to the poor accuracy
of generation from EEG signals, the generated speeches do
not form coherent sentences, despite Whisper’s attempts to
infer them as meaningful sentences. This lack of coherence in
the generated speech is considered to be a contributing factor.
From the above, it can be seen that linguistic information could
not be converted into speech.

To conduct the analysis for Tables II and III, we performed
Steel-Dwass tests on the F0, F1, and F2 values calculated
for each sentence from the original and generated speech for
both MMY and FTK. As a result, significant differences were
observed in the mean values of F0 and F1 across all four
comparisons. For F2, significant differences were also found
between the two synthesized speeches, suggesting that the gen-
erated voices do not resemble each other closely. In addition,
SVM was able to correctly identify the generated speeches



as well as the ground-truth speeches with 85.34% accuracy.
This indicates that different speeches can be recovered if the
speakers of the speeches are different. The average value of
MMY of the ground-truth speech and the generated speech
increased from 154.6 to 221.2 Hz, The mean value of FTK of
the ground-truth speech and FTK of the generated speech in-
creased from 236.2 to 293.1 Hz. These results indicate that the
F0 of the generated speech is higher than that of the ground-
truth speech about 60 Hz. The values of variance do not change
much, indicating that although the distribution of F0 is close
to that of the heard sounds, the F0 is not correctly estimated
as an average. However, although the generated speech has a
different speaker characteristics from the ground-truth speech,
MMY and FTK of the generated speech are clearly spoken by
different speakers, and this can be seen from the F0 value and
the accuracy of speaker identification by SVM. These facts
suggest that features representing speaker characteristics can
be estimated from EEG. However, we should note that the data
in this experiment is only 480 sentences, and the high accuracy
of the speech inferred from the training data suggests that the
model may be over-trained on the training data. At the same
time, the high accuracy of the speech inferred from the training
data suggests that the model may be able to synthesize more
accurate speech by increasing the training data.

V. CONCLUSION

As a model for the Transformer, we used the Voice Transfer
Network to recover heard speeches from the EEG. This study
showed the potential of the Transformer for speech decoding
using EEG. Furthermore, using the speeches of two speakers
and the EEG signals of the listeners, we were able to dis-
tinguish between the two speakers. This indicates that EEG
signals contain information related to the vocal characteristics
of the heard speeches. It also demonstrated the potential to
reconstruct speeches from EEG signals.

As mentioned above, we could not examine the linguistic
features of the speeches generated from the test data because
the generated speeches were not saying meaningful sentences
like the original speeches but rather were making a series of
random sounds. Therefore, future work involves investigating
in further detail the linguistic features of the speeches and
improving the model structure to infer linguistic features from
EEG signals.

Another issue that needs to be addressed in future experi-
ments is to increase the amount of data in the experiments.
First, the data needs to be increased to avoid over-fitting. We
will also need to increase the number of speakers. In this
experiment, we used the speeches of two speakers, a man
and a woman, and the F0 values of these two speakers are
very different. We will investigate the possibility of increasing
the number of speakers to generate speeches with different
characteristics from a wider variety of speakers.
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