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Abstract—Partially spoofed/fake audio, in which segments of
utterances are replaced with synthetic or natural audio clips, has
emerged as a new form of deep audio forgery, posing potential
severe threats to societal security. To address this issue, we employ
a deep learning-based frame-level detection system, introducing
a frame-level detection approach. We explore the effectiveness
of WavLM in waveform boundary detection, utilizing WavLM
as a feature extractor for original audio samples. Acoustic
features and frame-level embeddings are concatenated, with an
OS block embedded within the frame-level feature extraction
process, in conjunction with CNN-1D to form the ResNet-OS
network. This system can detect partially deceived audio and
pinpoint the manipulated segments, effectively integrating multi-
scale convolution to consider the interplay between local and
global information in time series classification tasks. Experimental
results show that this approach offers substantial generalization
capabilities and robustness compared to traditional frame-level
detection techniques.

I. INTRODUCTION

Deepfake audio refers to sounds that are modified or created
using deep learning technologies, aimed at deceiving both
humans and machines. These technologies, particularly text-
to-speech (TTS) and voice conversion (VC), have significantly
enhanced the realism of synthetic voices, making them nearly
indistinguishable from natural speech[1]–[3]. In this context,
high-fidelity synthesis/conversion systems inevitably provide
criminals with the means to commit fraud by impersonating
others. Therefore, the detection of audio forgeries is linked
to societal security, privacy protection, and property safety,
making it crucial to effectively detect deceptive speech to
mitigate the potential threats posed by false information in
audio content.

In response to the threats posed by audio spoofing attacks,
the ASVspoof Challenge is held biennially to explore de-
fensive strategies against various types of spoofing attacks,
including synthetic speech, voice conversion, replay, and im-
personation[4]. Nevertheless, a significant scenario has been
overlooked in most datasets and challenges where a bonafide
speech utterance is contaminated by synthesized speech seg-
ments, leading to partial spoofing (PS).Attackers can use PS
technology to modify key words in a sentence, such as time,
place, and characters, thereby changing the semantic meaning
of the sentence. This type of modification is low-cost and
easy to perform. Therefore, defending against this PS scenario
presents a significant challenge for defenders.

In recent years, significant advancements have been made in
the realm of Audio Deepfake Detection (ADD) concerning PS
scenarios. Yi et al.[5]developed a dataset focused on altering
several key words in semi-authentic audio, while Zhang et
al.[6]designed the ”PartialSpoof” voice database specifically
for PS scenarios. These databases signify the commencement
of PS scenario research within ADD tasks. Researchers have
explored large-scale self-supervised pre-training models[7],
[8],which have demonstrated superior performance over tradi-
tional acoustic features such as MFCC and LFCC. Wu et al.[9]
have developed a boundary detection system named ”Fake
Span Discovery,” which is capable of identifying splicing
boundaries. Additionally, Track 2 of ADD 2023 emphasizes
the importance of accurately locating manipulated regions,
making the research into the precise localization of spliced
segments a more challenging and critical task. The perfor-
mance of the boundary detection system still requires further
enhancement.

This paper introduces a novel frame-level boundary detec-
tion system designed to identify partially spoofed audio. Unlike
previous approaches that focused on utterance-level detection,
our system exploits discontinuities between audio segments
to accurately detect connection boundaries at the frame level.
We employ WavLM as the feature extractor, coupled with
the ResNet-OS architecture and a Transformer-based frame-
level classifier for boundary detection. The model was trained
using the HAD dataset and evaluated across multiple test sets.
The results demonstrate that our system surpasses existing
partial fake audio detection systems with boundary detection
capabilities. It achieved an Equal Error Rate (EER) of 0.06%
on the HAD validation set and 0.023% on the HAD test set,
indicating its state-of-the-art performance in detecting forged
regions within audio streams.

II. METHOD

In this study, we focus on audio signals containing forged
segments, with the objective to identify frames that contain
discontinuous information. Given the acoustic feature input
X = (x1, x2, . . . , xT ) ∈ RD×T , where D represents the
dimension of features and T represents the number of frames,
this task is defined as a frame-level binary classification prob-
lem. The classification labels y = (y1,y2,...,yT,) ∈ {0, 1}T .
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Fig. 1. The architecture of our proposed model

Our system is capable of identifying specific frames that
contain discontinuities. If a frame is located at the boundary
between forged and authentic audio, it is labeled as 1; oth-
erwise, it is labeled as 0. To enhance the robustness of the
system, frames close to the boundary are also marked as 1.
This approach not only detects forged segments within the
audio signal but also accurately pinpoints their locations.

A. PROPOSED MODEL

Figure 1 depicts the architecture of our proposed model. We
leverage the pretrained WavLM model[10] for feature extrac-
tion from the original audio. Subsequently, we utilize ResNet-
OS to further extract frame-level embeddings. These acoustic
features and frame-level embeddings are then concatenated
and input into a transformer-based frame-level classifier, which
provides the probability of each frame being a boundary.

B. Feature extraction

Wav2Vec[11]and WavLM[10]are two state-of-the-art self-
supervised learning models that are primarily used for pro-

cessing speech data. They have demonstrated exceptional per-
formance in numerous downstream tasks, including automatic
speech recognition (ASR)[12]. Consequently, we also employ
these unsupervised models as feature extractors for original
audio samples. We set the frame count T for both Wav2Vec
and WavLM at 64, with an output feature frame rate of 20
milliseconds, culminating in a total feature dimension of 768.

C. Frame-level embedding extraction

After the feature extractor, we employ the ResNet-OS
network to obtain frame-level embeddings, as illustrated in
Figure 1. The ResNet-OS architecture includes two CNN-1D
layers with N residual blocks sandwiched between them. Each
residual block consists of two CNN-1D layers and an OS
block, and features a residual connection that runs from the
input to the output.

ResNet-Os is the core architecture of the model, consisting
of N residual blocks, each configured as an OS-CNN. OS-CNN
(Omni-Scale Convolutional Neural Network) is an architecture
specifically designed for time series classification, based on the
traditional one-dimensional convolutional neural network (1D-
CNN). This architecture incorporates OS block[13], enabling
the model to effectively learn and extract features across
various scales. Consequently, it excels in handling time series
data characterized by complex patterns and dynamic changes.
ResNet-OS includes two CNN-1D layers, between which
N OS-CNN blocks are interspersed. Each OS-CNN block
comprises two CNN-1D layers, with an OS block embedded
between them. Moreover, the structure features a residual
connection running from the input to the output to enhance
learning capabilities and efficiency in information transfer. The
architecture of the OS block, depicted in Figure 2, is a three-
layer, multi-core convolutional network structure, where each
convolutional layer employs multiple kernels and performs
same-padding convolution operations. For configuring the ker-
nel sizes, we use p(i) to represent the set of kernel sizes for
the i-th layer:

P (i) =

{
{1, 2, 3, 5, . . . , pk} i ∈ {1, 2}
{1, 2} i = 3

(1)

This set can include various sizes, allowing each layer to
capture features at different scales. Typically, smaller kernels
are capable of capturing more detailed features, while larger
kernels can capture broader features.The core concept of the
OS block (Omni-Scale Block) revolves around how to cover all
possible receptive field (RF) sizes by selecting convolutional
kernels of different sizes. The receptive field size, defined as
the size of the region in the input that produces the feature,
has always been a crucial factor affecting the performance of
one-dimensional convolutional neural networks (1D-CNN) in
time series classification tasks. The set of receptive field sizes,
S, represents the collective receptive field sizes of all paths.
The calculation of the receptive field set S can be described
as follows:
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Fig. 2. Diagram of the OS block.

S =
{
p(1) + p(2) + p(3) − 2 | p(i) ∈ P(i)

}
(2)

Based on Goldbach’s conjecture, which posits that every
even number can be expressed as the sum of two primes, we
can expand the receptive field set:

S =
{
e+ p(3) − 2 | p(3) ∈ P(3), e ∈ E

}
(3)

where E is the set of all even receptive fields generated by
the first two layers. Combining Equation (3) and Equation (1),
we get:

S = {e | e ∈ E} ∪ {e− 1 | e ∈ E} ≡ N+ (4)

N+ represents the set of all positive integers, indicating that
through appropriate selection of convolutional kernels, it is
possible to cover all receptive field (RF) sizes from 1 to the
maximum possible size. Therefore, by properly choosing pk,
we can cover any range of integer receptive field sizes, thereby
extracting more effective frame-level features.

D. Frame-level classifier

To capture long-range global context within frames, we
utilize several Transformer encoders. Then, we further model
the sequence embeddings from the Transformer encoders using
BiLSTM. Finally, a fully connected layer predicts the boundary
probability for each frame.

III. EXPERIMENT

A. Data Preparation

Our training data comes from the Half-truth Audio Detection
(HAD) dataset[5]. This type of audio only modifies a few
words in the original speech, posing a serious threat to audio
verification systems, as these small-scale modifications are
often difficult to detect. Table I provides statistics on the
datasets used in our experiments. As shown in Table I, the
HAD-train dataset contains 26,554 genuine utterances and
26,554 fake utterances, while the HAD-dev dataset includes
8,914 genuine utterances and 8,914 fake utterances. All fake
utterances from the HAD-train and HAD-dev datasets are
synthesized using mainstream speech synthesis technologies.
The HAD-test dataset consists of 9,072 labeled utterances.

TABLE I
THE STATISTICS OF DATASETS (#UTTERANCES)

Name Bona fide Fake ALL

HAD-train 26554 26554 53108
HAD-dev 8914 8914 17824
HAD-test - - 9072

Half-truth Audio Detection (HAD) dataset is based on
AISHELL-3 corpus[14]. It is publicly available2 and under
theApache license 2.0 . AISHELL-3 is a multi-speaker Man-
darin speech corpus for training text-to-speech (TTS) models.
We inserted audio clips into authentic discourse according to
the following strategy:

1. Named entity recognition and lexical annotation using
jieba, followed by random replacement or substitution of these
keywords with antonyms in order to change the semantics and
emotional expression of the original utterance.

2. The (GST)-based Tacotron[15], [16] system is used to
generate audio corresponding to the edited text, which is
then processed by the neural vocoder LPCNet to enhance the
naturalness and emotional expression of the synthesized audio
and to ensure that its sound quality is consistent with the
original recording.

3. The precisely processed synthesized audio is inserted
into a specific position of the original audio, and the volume
and sound quality are adjusted to ensure a seamless auditory
integration and consistency between the synthesized part and
the original audio.

In terms of model training, we combine the real discourse in
the HAD-train dataset with part of the fake dataset as the final
training data. Based on the HAD-test set, it is evaluated by
combining it with the HAD-dev set as an adaptation dataset.

B. Parameter settings

ResNet-OS consists of 12 OS-CNN blocks, each containing
a CNN-1D layer without bias, with a kernel size of 1 and both
input and output sizes set to 512. The first CNN-1D operates
without bias at a kernel size of 5, with an input size of 768
and an output size of 512. The final CNN-1D has a kernel size
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of 1, input size of 512, and outputs frame-level embeddings
with an embedding size set to 128.

For the frame-level classifier, the Transformer encoder in-
cludes four attention heads and two encoder layers. The size
of the feed-forward network (FFN) is 1024. The BiLSTM
contains 128 hidden neurons and is followed by a ReLU
activation. Finally, a 256-dimensional fully connected layer
predicts the probability of each frame.

C. Training Process

During the training process, genuine and fake utterances are
considered identical since there is no boundary between them.
We randomly draw an audio sample from the partially fake
dataset and genuine data from HAD-train. The probability of
selecting a positive sample is set at 0.5 to ensure data balance.
Each audio is cut to a fixed length, for instance, 0.64 seconds,
1.28 seconds, or 2.56 seconds. We use the MUSAN[29] and
RIRs[30] corpora for online data augmentation. For positive
samples, we set the label as a zero vector. For negative samples,
the boundary label between the genuine audio clip and the fake
audio clip is set to 1, with all others set to zero. In addition,
we also set the labels near the boundaries to 1.

In our experiments, the model is trained 100 epochs using
binary cross-entropy loss and the Adam optimizer. The batch
size is set at 64, and the learning rate is set at 10−4. During
training, we evaluate the equal error rate (EER) on the adapta-
tion set and the test set. For the model based on wav2vec, we
take the average of the five models with the lowest EER for
inference and evaluation. However, averaging models based on
wavlm resulted in decreased performance. Therefore, for the
wavlm-based model, we only consider the model with the best
performance for evaluation.

IV. RESULTS AND DISCUSSION

Our experiments evaluated two systems: one trained with the
Wav2Vec feature extractor and the other with the WavLM fea-
ture extractor. The results are shown in Table II ,indicate that
an audio length of 1.28 seconds offers the best performance
for tasks using WavLM and Wav2Vec. This may be because
this duration is sufficient to capture adequate contextual infor-
mation without introducing noise or unnecessary details due
to excessive length. The model based on Wav2Vec features
achieves an Equal Error Rate (EER) of 0.08% on the HAD-dev
set and 0.067% on the HAD-test set at 1.28 seconds. For the
WavLM model at the same duration, the EER on HAD-dev
is 0.06%, and on HAD-test it is 0.023%, with performance
degradation observed at audio lengths of 0.64 seconds and
2.56 seconds. These results suggest that the model trained with
WavLM features exhibits superior generalization in this task
compared to Wav2Vec.

In this study, we set the waveform length l to 1.28 seconds
for models based on Wav2Vec and WavLM, and conducted a
series of ablation studies to evaluate the performance impact
of specific network components. As shown in Table III , we
removed certain components from the proposed network and
reported the corresponding performance. Specifically, the ”w/o

TABLE II
SYSTEM PERFORMANCES REGARDING VARIOUS SEGMENT L, REPORTED IN

EER.

Feature Test Sets Wav length l (s)

0.64s 1.28s 2.56s

Wav2Vec (w/o OS block) HAD-dev 0.35% 0.08% 0.42%
HAD-test 0.20% 0.067% 0.18%

WavLM HAD-dev 0.19% 0.06% 0.28%
HAD-test 0.12% 0.023% 0.10%

ResNet-OS” model indicates the removal of the ResNet-OS
component used for frame-level embedding extraction. For
the Wav2Vec model, the equal error rate (EER) increased to
0.16% on the HAD-dev dataset and to 0.15% on the HAD-test
dataset after removing ResNet-OS, demonstrating its critical
role in model performance. Similarly, for the WavLM model,
removing ResNet-OS resulted in an EER of 0.10% on HAD-
dev and 0.05% on HAD-test. Removing the OS block lead to
an EER of 0.073% on HAD-dev and 0.035% on HAD-test for
the WavLM model, proving that the OS block also plays a
significant role in enhancing model performance.

Overall, the WavLM model showed a better error rate
performance compared to Wav2Vec, especially evident in the
test set. These findings emphasize the critical role of the OS
block and ResNet-OS structure in enhancing the accuracy of
partial fake audio detection tasks, and removing these key
components significantly reduces model performance.

TABLE III
PERFORMANCES (EER) REGARDING VARIOUS FEATURE EXTRACTOR AND

ARCHITECTURE DESIGNS, W/O MEANS WITHOUT.

Model HAD-dev HAD-test

Wav2Vec 0.08% 0.067%
w/o ResNet-OS 0.16% 0.15%

WavLM 0.06% 0.023%
w/o ResNet-OS 0.10% 0.05%
w/o OS block 0.073% 0.035%

V. CONCLUSIONS

We developed a frame-level partial fake audio detection
method that not only provides binary judgments at the utter-
ance level for partially spoofed audio but also predicts the
precise insertion or replacement locations of fake clips. By
conducting ablation studies on our model components and
evaluating various acoustic features, including Wav2Vec and
WavLM, our experimental results demonstrate that this system
outperforms existing boundary detection systems in detecting
the boundaries of partially spoofed audio.
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