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Abstract—Brain computer interface (BCI) is a system that
converts brain activity information into commands, allowing
people to communicate with the outside world without the need
for physical activity. Steady-state visual evoked potential (SSVEP)
which is a kind of event related potentials (ERPs) is used for
BCI. SSVEP shows higher performance and has been improved
in various ways to to improve the information transfer rate
and expand the number of commands, such as phase-modulated
SSVEP-BCI. To further improve the performance of SSVEP-BCI,
the frequency and phase of SSVEP needs be detected in a short
time.

In this study, we apply the Hilbert transform to the complex-
valued convolutional neural network (CVCNN) for phase-
modulated SSVEP-BCI. The Hilbert transform and accompa-
nying analytic signal enable us to determine the instantaneous
frequency and phase. The proposed CVCNN incorporating the
Hilbert transform not only detects instantaneous frequency and
phase information from electroencephalogram (EEG), but also
learns convolutoinal filter automatically to detect SSVEP fre-
quency, phase, and their harmonics components. As the result
of evaluation experiments on open SSVEP datasets, the proposed
method showed higher accuracy than conventional methods.

I. INTRODUCTION

Brain-computer interface (BCI) is a system to operate
computers or communicate with the outside world without
the need for physical activity [1]. BCI is expected to be
used as a communication tool for people who cannot move
their muscles freely, such as patients with amyotrophic lateral
sclerosis (ALS). Futhermore, BCI is applied for healthy people
in areas such as gaming, entertainment, security, and education
[2].

Electroencephalogram (EEG) is a scalp-based measurement
of changes in electrical potentials due to cranial nerve activity.
Event related potentials (ERPs) occurs in association with
perceptual and cognitive processing. Visual evoked potential
(VEP) is a kind of ERPs, that is evoked by visual stimuli.
Steady-state visual evoked potential (SSVEP) is a kind of VEP,
that is elicited by periodic flashes. SSVEP has higher signal-to-
noise ratio than the other ERPs and less individual differences,
thus, is applied to BCI. SSVEP-BCI has shown high accuracy
[3], [4].

SSVEP is easily evoked around 10 Hz, and there is a
limit to the frequency used for visual stimulation. The phase-
modulated SSVEP was devised to increase the number of
commands. The phase-modulated SSVEP attempts to modulate

not only by frequency but also phase information. Extended
canonical correlation analysis (CCA) method was proposed
to classify the phase-modulated SSVEP, and showed high
information transfer rate (ITR) of 117.75 bits/min and 105
bits/min [5], [6].

In recent years, deep learning has attracted much attention
due to its success in pattern recognition such as image clas-
sification, object detection, and natural language processing.
These are due to the easy availability of large datasets and
increased computing power. Convolutional neural network
(CNN) is one particularly successful model, which extracts
features by convolution to provide position invariance to the
model [7]–[9].

A complex-valued neural network (CVNN) is a neural
network model that extends weights, inputs, outputs, activa-
tion functions, etc. to complex numbers. CVNN has been
performed better than real-valued neural network (RVNN)
in various fields, because complex numbers are suitable for
representing amplitude and phase to process in the frequency
domain via Fourier transforms, etc. [10]–[13].

This study proposes a complex valued convolutional neural
network (CVCNN) model that incorporates the Hilbert trans-
form. By the Hilbert transform, the proposed neural network
model generates an complex analytic signal within the neural
network model to obtain instantaneous amplitude and phase.
We used this model for phase-modulated SSVEP classification.
By extracting instantaneous amplitude and phase in the neural
network, phase-modulated SSVEP is detected from short time
frame accurately. We compare the performance of the proposed
model with conventional methods and typical CNNs.

II. METHOD

A. Hilbert transform and analytic signal

The sinusoidal signal x(t), whose amplitude and frequency
vary with time, is given by

x(t) = A(t) cos(ω(t)t+ θ)

= A(t) cos(ϕ(t)), ϕ(t) = ω(t)t+ θ, (1)

where A(t) is the instantaneous amplitude, ω(t) is the instan-
taneous angular frequency, and θ is the initial phase. In order
to determine the instantaneous amplitude A(t) and frequency



ω(t), the sinusoidal signal x(t) is extended to complex analytic
signal by the Hilbert transform.

The Hilbert transform shifts the phase of the sinusoidal
signal x(t) by 90 degrees. The Hilbert transform y(t) of x(t)
is defined by the convolution of x(t) and 1/πt,

y(t) = x(t) ∗ 1

πt
=

1

π

∫ ∞

−∞

x(τ)

t− τ
dτ. (2)

The analytic signal z(t) is generated by putting the signal x(t)
in the real part and the Hilbert transform y(t) in the imaginary
part,

z(t) = x(t) + jy(t)

= A(t) cos(ϕ(t)) + jA(t) sin(ϕ(t))

= A(t)ejϕ(t). (3)

The instantaneous amplitude A(t) and instantaneous phase
ϕ(t) are respectively obtained as follows,

A(t) =
√
x(t)2 + y(t)2 (4)

ϕ(t) = atan2(y(t), x(t)), (5)

where atan2 function calculates the declination angle in the
complex plane. In general, the instantaneous angular frequency
ω(t) is obtained by the derivative of ϕ(t).

The Hilbert transform filter is an FIR filter that performs
the Hilbert transform (2). Its coefficients is generated by
Parks-McClellan algorithm. The output signal is delayed in
proportion to the size of the FIR filter. When applying an M -
dimensional Hilbert transform filter, the signal is delayed by
M
2 sampling points.

B. Proposed neural network

The proposed neural network achieves instantaneous fre-
quency analysis through the Hilbert transform in the convo-
lutional layer. The complex analytic signal is generated by the
convolutional layer, and the latter complex valued activation
function extracts frequency and amplitude information.

The activation function of the complex valued layer is
not as simple as the real valued network because it is a
complex function. In the conventional CVNN, ReLU(x(t)) +
iReLU(y(t)) or tanh(|z(t)|) exp(j arg z(t)) is used [14]–[16].
In this research, we use the absolute value function |z(t)| =√
x(t)2 + y(t)2 and the declination function arg z(t) =

atan2(y(t), x(t)) to obtain instantaneous amplitude and phase.
The structure of the proposed network model is shown in

Fig. 1. This network model consists of three convolutional
layers and one fully connected layer. The size of the input
data is a matrix of the number of samplings Ndata multiplied
by the number of channels Nch. The size of filters is Nfilters.

The first convolutional layer reduces dimensionally with
respect to the channel direction. After the convolution, batch
normalization, activation function ReLU, and the dropout are
applied.

In the second convolutional layer, the convolution is per-
formed with respect to the time direction. This convolutional
layer generates narrowband signals corresponding to the stim-
ulus frequencies and harmonics of SSVEP.

The third convolution layer generates analytic signal. After
the convolution, the absolute value function and the atan2
function are applied as the activation functions. Then the values
are flattened, and discriminated by the fully connected layer.
We set the initial value of the convolution filter in the third
layer to the Hilbert transform filter. We considered two cases
where the filter weights are updated or fixed during the learning
process. We refer to them as ”proposed train” and ”proposed
untrain” respectively.

III. EXPERIMENT

A. Datasets

We used two open datasets. The first dataset is phase-
modulated SSVEP data of 35 subjects with 40 classes [5]. We
used the same nine channels and eight experimental subjects
as [5]. The sampling frequency was 250 Hz. The visual stimuli
consist of 40 frequencies ranging from 8 to 15.8 Hz at 0.2 Hz
intervals. The initial phase of each stimulus is also shifted by
0.5π.

The second dataset is phase-modulated SSVEP data from
ten subjects in twelve targets [6]. The following method is
used to create a series of visual stimuli at all frequencies and
initial phases regardless of the refresh rate.

Let f be the frequency of the steady blinking stimulus, ϕ
be the initial phase and Nf be the refresh rate. The visual
stimulus is generated as follows,

s(f, ϕ, n) = square[2πf(n/Nf ) + ϕ], (6)

where square[] generates a 50% duty cycle square wave with
levels 0 and 1. The stimulus sequence si(n) of the i-th targets
is defined as

si(n) = s(f0 + (i− 1)∆f, ϕ0 + (i− 1)∆ϕ, n),

i = 1, 2, . . . , Ntargets, (7)

where f0 is the minimum frequency used for stimulation, ϕ0 is
the initial phase at frequency f0, ∆f and ∆ϕ are the frequency
and phase intervals respectively, and Ntargets = 12 is the
number of frequencies used for stimulation [6]. The twelve
visual stimuli were presented at a refresh rate of 60 Hz, and the
frequency and phase values were (f0 = 9.25Hz,∆f = 0.5Hz)
and (ϕ0 = 0,∆ϕ = 0.5π). Sampling frequency was 256 Hz.

B. Methods

We compared three network models: real-valued convo-
lutional neural network (RVCNN), complex-valued convolu-
tional neural network (CVCNN), and the proposed method. For
RVCNN and CVCNN, we used models similar to the structure
of the proposed method. The both models have two convo-
lutional layers and one fully connected layer. The number of
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Fig. 1: Structure of the proposed network model

filters and filter size were set to the same values as for the pro-
posed method. For RVCNN, ReLU was used as the activation
function after the convolutional layer, and the softmax function
was placed after the fully connected layer. The activation
functions of CVCNN are as follows; tanh(|z|) exp(j arg z) is
used after the first convolutional layer,

√
x(t)2 + y(t)2 is used

after the complex fully connected layer. In CVCNN, complex
batch normalization was applied for the batch normalization
part [15].

Grid searches were executed for the parameter selection
of L2 regularization, dropout rate, learning rate, and number
of epochs in {0.0001, 0.001, 0.01}, {0.0, 0.2, 0.4}, {0.0001,
0.001, 0.01}, {300, 400, 500}, respectively. Adam was used for
optimizer. The loss function is mean squared error. All neural
network models and experiments were implemented using
Python 3.11.3, Numpy 1.24.3, Keras 2.13.1, and Tensorflow
2.13.0. We used remez function of the Python library Scipy
for the Hilbert transform filter.

IV. RESULT

We compared classification accuracy and ITR. Fig. 2 shows
the result of the first dataset. The proposed method showed
the highest classification accuracy. The ITR of the proposed
method also showed the highest value. Table. I shows the
classification accuracy for each subject of the first dataset with
1s data length. In S1, S2, and S8, the proposed method showed
higher accuracy than the conventional methods. Fig. 3 shows
the learning curve of neural network models at one trial of S1.
The proposed method shows that the difference in loss between
training and testing is smaller than the other methods.

Fig. 4 shows the result of the second dataset. CNN has
the highest classification accuracy. The proposed method was
the second best classification accuracy and ITR. Table. II
shows the classification accuracy for each subject of the second
dataset with 1s data length. In S7, the proposed method showed
the highest accuracy than the conventional methods. Fig. 5
shows the learning curve of neural network models at one trial
of S7. The proposed method shows that the difference in loss
between training and testing is small and that the learning is
stable.

V. CONCLUSION

The proposed method improved classification accuracy com-
pared to the conventional method in the first dataset. ITR
of the proposed method achieved 134.8 bits/min on average.
The conventional method obtaines frequency information of
the signal by the convolutional layer with respect to the time
direction, but these models cannot obtain amplitude and phase
information. The proposed method utilizes the initial phase
information, thus that the proposed model showed higher
classification accuracy for the dataset with a large number of
frequencies used.

In the second dataset, there was one subject for whom the
proposed method was the most accurate. The proposed method
was more stable in learning the classification accuracy and loss
than the conventional method. This indicates that overlearning
is unlikely to occur and generalization performance is high.

The phase-modulated SSVEP data used in the experiment
does not increase the number of stimuli based entirely on
phase information while incorporating phase modulation. Fu-
ture works will include considering phase-modulated SSVEP-
BCI using stimuli with different initial phases at the same
frequency. The proposed model may be even more accurate
than the conventional method.
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Fig. 3: (a) Learning curve accuracy and (b) learning curve loss
for the first dataset with different data lengths from 0.25 s to
2.0 s with a step of 0.25 s. This is the result of one trial of
subject1. ”Proposed” model is ”Proposed train” model.
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Fig. 4: (a) Classification accuracy for the second dataset with
different data lengths from 0.5 s to 4.0 s with a step of 0.5 s.
(b) Simulated ITRs across subject using different data lengths.
The combination method was quoted from [6]. The error bars
indecate standard errors.
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Fig. 5: (a) Learning curve accuracy and (b) learning curve loss
for the second dataset with different data lengths from 0.5 s
to 4.0 s with a step of 0.5 s. This is the result of one trial of
subject1. ”Proposed” model is ”Proposed train” model.
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