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Abstract—Source code vulnerability detection is a critical
issue in software security. Existing detection methods primarily
focus on the function-granularity, neglecting inter-function call
information and lacking the ability to detect inter-function
vulnerability. The isolation of functions is one of the reasons that
limits the performance of deep learning models. In this work,
we propose MGVul: a Multi-granularity detection framework
for software vulnerability. This framework treats a project as a
whole graph, files as subgraphs, functions as nodes, and function
call relationships as edges. By using a multi-expert mixture
graph neural network to learn inter-function call information,
it not only improves the model’s detection performance at the
function-granularity but also is capable of handling detection
tasks at the file-granularity and project-granularity. Preliminary
evaluation shows that introducing inter-function call relationships
bring an average F1-score improvement of 7.99% for function-
level detection. Meanwhile, our framework also shows promising
results at both the file-granularity and the project-granularity.
The source code will be released upon paper acceptance.

I. INTRODUCTION

The development of the Internet industry has led to the
widespread influence of open-source software. According to
information from CVE (Common Vulnerabilities and Expo-
sures) [1], the number of vulnerabilities has rapidly increased
in recent years [2]. Research on source code vulnerability
detection is also growing steadily. With the development
of artificial intelligence technology, detection methods have
shifted from expert-dominated static and dynamic analysis to
machine learning and deep learning models [3].

In recent years, most research based on deep learning, using
either pre-trained language models or graph neural networks,
has focused on individual functions[4]–[7]. Specifically, the
models take a single function as input and output whether the
function contains a vulnerability. Pre-trained language models
treat functions as text and perform classification through steps
such as tokenization and embedding [6], [8]. Graph neural
networks detect vulnerabilities by learning from the Abstract
Syntax Tree (AST) and other representations parsed from
a single function [9], [10]. Despite significant progress in
function-granularity detection in recent years, there remains
an insurmountable barrier [7]. We argue that the problem lies
in the absence of some critical information: the function call
relationships are not provided to the model for learning and
the model cannot observe the internal conditions of related

functions. Since vulnerabilities often occur during function
calls [11]–[13], it is reasonable to view a project as a whole
rather than as multiple individual entities.

In this paper, we propose MGVul, which enhances the
model’s detection capability at the function-granularity by
using function call graphs. Additionally, by learning the graph
structure from different levels (whole graph, subgraphs, and
nodes), we can naturally accomplish vulnerability detection
tasks at multiple granularities (project, file, and function) by
aggregating information at the corresponding level. Firstly,
we use code parsing tools to analyze software projects and
capture the complex call relationships between multiple func-
tions in multiple files. Then, we encode functions as fixed-
length vectors using pre-trained language models, treating
them as function features. Moreover, we utilize a graph neural
network (GNN) with a multi-expert mixture model to learn the
function call graph from different perspectives. Furthermore,
we introduce a pairwise training method to deepen the model’s
understanding of vulnerabilities in the training parse. Finally,
we treat the project as a whole graph, files as subgraphs, and
functions as nodes, conducting classification tasks at all these
granularities for vulnerability detection.

Experimental results show that MGVul can effectively im-
prove function-granularity detection performance compared to
baseline models. Additionally, our framework is also compe-
tent for file-granularity and project-granularity detection.

In summary, the contributions of this work are as follows:

• We introduce function call information into function-level
vulnerability detection tasks by using GNN to learn the
function call graph.

• By aggregating information at the corresponding gran-
ularity, our framework is capable of handling detection
tasks at the file-granularity and project-granularity.

• Through preliminary evaluation, incorporating func-
tion call information improves the model’s function-
granularity detection performance, with an average F1-
score improvement of 7.99%. For the other two gran-
ularity levels of detection, MGVul also demonstrates
encouraging results.



II. PRELIMINARY

This section introduces intra-function vulnerability and
inter-function vulnerability with their examples. Additionally,
we provide the definition of the multi-granularity source code
vulnerability detection.

A. Intra-function Vulnerability and Inter-function Vulnerability

Intra-function vulnerability refers to a vulnerability that
occurs within a single function. Figure 1(a) illustrates an
example (CVE-2014-1266) [14]. Due to the extra line ”goto
fail;”, the signature verification always fails. Another sce-
nario is when vulnerabilities arise during a function call,
even though both the caller and callee function are flawless.
Figure 1(b) provides another example (CVE-2014-3513) [15].
Both the ssl3 read n() and ssl3 get record() functions are
benign on their own. However, when ssl3 get record() calls
ssl3 read n(), if the length field of the read data packet is
incorrect, ssl3 read n() will enter an infinite loop, resulting in
a Denial of Service (DoS) attack.

1 static OSStatus SSLVerifySignedServerKeyExchange(
2 SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
3 uint8_t *signature, UInt16 signatureLen)
4 {
5 OSStatus err;
6 ...
7 if ((err =
8 SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
9 goto fail;

10 if ((err =
11 SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
12 goto fail;
13 /* MISSING BRACE - leads to always failing */
14 goto fail;
15 ...
16 }

(a) An example of the intra-function vulnerability.

1 int ssl3_read_n(SSL *s, int n, int max, int extend) {
2 ...
3 if (s->packet_length < (unsigned int)n) {
4 ret = ssl3_read_n(
5 s, n-s->packet_length, max-s->packet_length, 1);
6 }
7 ...
8 return ret;
9 }

10

11 int ssl3_get_record(SSL *s) {
12 int n;
13 ...
14 n = ssl3_read_n(
15 s, SSL3_RT_HEADER_LENGTH, SSL3_RT_HEADER_LENGTH, 0);
16 ...
17 }

(b) An example of the inter-function vulnerability.

Fig. 1: Examples of different categories of function vulnera-
bilities, the blue-highlighted lines cause the vulnerability.

B. Multi-granularity Source Code Vulnerability Detection

Given a project P = {F1, F2, . . . , FT }, where Ft is a file
belonging to P and T is the number of files. Each file Ft

contains a set of functions {f1
t , f

2
t , . . . , f

Nt
t }, where fn

t is a
function belonging to Ft and Nt is the number of functions of
Ft. We aim to learn a mapping to predict whether the project
P , each file Ft, and each function fn

t contain vulnerabilities.
Each of these predictions is a binary classification problem.

III. METHODOLOGY

A. Overview

We use a code parsing tool to transform the project P into a
function call graph G = {SG1, SG2, . . . , SGT }, where each
subgraph SGt corresponds to a file Ft in P . Each subgraph
SGt = {ND1

t , ND2
t , . . . , NDNt

t } consists of nodes NDn
t

that correspond to a function fn
t . The edges in G represent

the function call relationships. We employ a GNN to learn
from G and perform classification tasks at three granularities:
the whole graph level, the subgraph level and the node level.
The framework of our approach is illustrated in Figure 2.
The framework consists of three main components: function
call graph generation, input representation for code, MGVul
training and prediction.

B. Function Call Graph Generation

A clear function call relationships is crucial for vulnerability
detection. We chose Cflow [16], a widely used and free parsing
software. It can resolve not only intra-file call relationships, but
also inter-file function calls. By parsing the files to be detected
in a project, we obtained the function call graph, where each
function represents a node, and the nodes belonging to the
same file form a subgraph.

C. Input Representation

The goal of this phase is to convert functions into compact,
uniform-length feature vectors that preserve semantic and
syntactic information. This uniform length is crucial because
the feature vectors are used as node features in the graph.

To achieve this, we utilize pre-trained language models
for code representation. Trained on large code corpora, these
models can effectively capture the intricate semantic and
syntactic details of the source code. The code is input into the
model, which outputs a sequence of contextual embeddings.
Such embeddings are then converted to code features.

D. MGVul Training and Prediction

The goal of this phase is to leverage the aggregation capa-
bilities of GNN to learn from functions with call relationships.
Since function calls can have multiple layers and long-range
dependencies, we use Gated Graph Neural Network (GGNN)
[17] to effectively learn and integrate the embeddings due to
their excellent depth perception.

Our multi-granularity detection requires learning features
from multiple levels, a single network may not effectively meet
these requirements. We need to aggregate information from
different perspectives (granularities) to suit different focuses.
Therefore, we introduce the multi-expert mixture model[18].
Specifically, each fn

t is transformed into ent after encoding.
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Fig. 2: Overview of the MGVul detection framework.

These embeddings ent are then processed through three inde-
pendent expert networks (GGNN) for node communication and
feature integration, generating (ent )1, (e

n
t )2, (e3

n
t )3, the final

representation of the node (ent )
′ can be formulated as:

(ent )
′ =

3∑
i=1

g(x)i(e
n
t )i. (1)

Here, (ent )i, i = 1, 2, 3 are 3 expert GGNNs and g represents a
gating network that ensembles the results from all experts. The
term

∑3
i=1 g(x)i = 1, and g(x)i, the i-th logit of the output

of g(x), indicates the weight for representation (ent )i.
After obtaining the final representation of the nodes, we

generate the features of the subgraph (et)
′ based on the nodes’

affiliation. Specifically, we compute (et)
′ as the average of

(ent )
′:

(et)
′ =

1

n

N∑
n=1

(ent )
′. (2)

The feature of the entire graph (eP )
′ is generated by

averaging all the node features. Specifically, we compute (eP )
′

as follows:

(eP )
′ =

1

T

T∑
t=1

(
1

Nt

Nt∑
n=1

(ent )
′

)
. (3)

After obtaining the representations at each granularity, we
complete our task by adding classification layers separately for
each granularity. During training, we compute the weighted
sum of the loss functions for the three granularities.

Since many of the vulnerability detection datasets are built
by crawling historical patches [12], [19], the advantage of
these approaches is that they provide code changes before and
after vulnerabilities are fixed, and we hope that the model can
observe such subtle changes in order to enhance the model’s
understanding of the vulnerabilities. To this end, we propose
a pairwise training strategy. Specifically, we train the model
by packing pairs of data in a batch so that the model learns
not only to detect anomalies in the vulnerability code but also

to understand the logic of fixing the code. Lossall is the sum
of Lossbefore and Lossafter. The specific computation can be
formulated as:

Lossall = Lossbefore + Lossafter (4)

Lossstage = α ∗ Lossgraph + β ∗ Losssubgraph + γ ∗ Lossnode, (5)

where α, β, and γ are hyperparameters indicating the contribu-
tion of different granularities. The stage can be either before
or after. During the inference phase, the input data consists
of individual graphs rather than pairs, so the pairwise training
strateg is only used in the training phase.

IV. EVALUATION

• RQ1: Can learning inter-function call relationships help im-
prove the model’s function-granularity vulnerability detection
capability?
• RQ2: How effective are the multi-expert mixture model and
the pairwise training strategy in our proposed method on multi-
granularity detection?

A. Dataset Details

Most current datasets are still at the function-granularity [8],
[20], where individual functions and their labels are used for
training. To the best of our knowledge, ReposVul [12] is the
first repository-level vulnerability dataset. It contains a large
number of real security incidents, meeting our requirements
for call parsing. We believe that this form of data organisation
is more reasonable for the vulnerability detection task. We
selected the C/C++ portion of ReposVul for our experiments.

We treated each record in ReposVul, consisting of files
related to C/C++ before and after fixing, as a project pair.
After parsing, each file in these projects is regarded as a
subgraph, and each function within these files is regarded
as a node. By contacting the authors, we determined the
organisation of the dataset with the meaning of the relevant
targets. We excluded records with files marked as -1, indicating
discrepancies between large language models and static code
analysis tools. Similarly, we excluded records where Cflow
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parsing was unsuccessful. The target of a project depends
on the files it includes: if it contains any file with a target
of 1, the project’s target is 1 (indicating the presence of
one or more vulnerabilities), otherwise, it is 0 (indicating no
vulnerabilities). After processing, we obtained 2,220 graphs
(project), containing 3,933 subgraphs (file), and a total of
132,088 nodes (function). We split the dataset into train,
validation, and test sets in an 8:1:1 ratio.

B. Experimental Settings and Metrics

For the pre-trained language model, we used the embedding
of the special token ([CLS]) as the input representation of the
function, which served as the node feature for the GGNN, with
a dimension of 768. The hyperparameters α, β, and γ were set
to 50, 10 and 1. We used a two-layer MLP for the classification
layers. The loss function was the Cross-entropy loss, and the
optimizer was Adam with a learning rate of 2 × 10−5. The
batch size for training was set to 32. All experiments were
conducted on an NVIDIA RTX 3090 GPU.

For evaluation metrics, we used Precision, Recall, and F1-
score. Precision is the proportion of correctly predicted positive
samples among all predicted positive samples. Recall is the
proportion of correctly identified positive samples among all
actual positive samples. The F1-score is the harmonic mean of
Precision and Recall.

C. Effectiveness of Introducing Inter-function Call Information
at Function Granularity (RQ1)

To the best of our knowledge, vulnerability detection at
the function granularity is still the mainstream nowadays. To
address RQ1, we validate the effectiveness by comparing to
baseline models. For fairness, our encoder is set to be the same
as the baseline. Specifically, for the baseline models, we use
the encoder to convert functions into vectors and then directly
apply a classifier. For the MGVul framework, we use the same
encoder to convert functions into vectors, then use GGNN for
feature communication and aggregation, and finally apply the
classification layer on the node features. We selected four pre-
trained code models: CodeBERT [21], GraphCodeBERT [22],
PDBERT [5] and UniXcoder [23]. These models are widely
used as encoders in vulnerability detection tasks.

Table 1 presents our experiment results. We observed that
all four baseline models showed significant improvements
in function-granularity detection performance after incorpo-
rating inter-function call information. The UniXcoder model
exhibited the most substantial improvement, with an F1-score
increase of 12.80%. Compared to recall, the precision rate was
generally lower, indicating a higher likelihood of false posi-
tives in the current dataset. Surprisingly, CodeBERT achieved
the highest recall. One possible reason is that the structural
information introduced during the pre-training phase may have
misled the model.

TABLE I: Evaluation results for the effectiveness of MGVul.

Method Precision Recall F1-score

CodeBERT 3.06 57.50 5.81
GraphCodeBERT 5.17 30.23 8.83
PDBERT 4.39 32.50 7.74
UniXcoder 10.62 36.25 16.43

MGVul
+CodeBERT 4.79 61.25 9.74
+GraphCodeBERT 6.35 52.33 11.32
+PDBERT 12.63 54.00 20.47
+UniXcoder 20.10 53.55 29.23

TABLE II: Evaluation results of ablation studies on the com-
ponents of MGVul.

Method Node F1 Subgraph F1 Graph F1

MGVul 29.23 31.25 33.33
w/o PTS 28.79 29.73 30.30
w/o MeMM 28.77 31.15 29.09
w/o PTS & MeMM 26.64 29.73 29.19

Observation 1. Learning inter-function call relation-
ships using GGNN improves the model’s function-
granularity vulnerability detection capability.

D. Effectiveness of MGVul and the ablation studies of its
components (RQ2)

MGVul can perform detection tasks not only at the function-
granularity but also at the file and project granularity. To
answer RQ2, we use UniXcoder as the encoder to validate
the detection capability of the MGVul framework and verify
the effectiveness of the multi-expert mixture model (MeMM)
and the pairwise training strategy (PTS). For the case without
MEMM, we use only a single GGNN. For the case without
PTS, we use disrupted data.

Table 2 presents our experiment results. We observed that
both MeMM and PTS can improve the model’s detection
capability at three function granularities. Specifically, MeMM
focuses on enhancing detection at the project-granularity, while
PTS focuses on improving file-granularity detection. When
both methods are used together, the model achieves the best
performance. The F1-score increased by 2.59%, 1.52%, and
4.14%, respectively.

Observation 2. The MGVul framework shows promis-
ing results across all three detection granularities. And
MeMM and PTS are useful for our framework.

V. RELATED WORK

In recent work, learning-based detection methods have grad-
ually become mainstream [24]–[26]. Among these methods,
most operate at the function level. VulCNN [27] learns vul-
nerability features by converting functions into images. MVulD

4



REFERENCES REFERENCES

[28] proposes a multimodal function-level vulnerability de-
tection method. Meanwhile, some studies operate at other
granularities. Vuldeepecker [29] uses code gadgets to represent
programs for vulnerability detection. Ghaffarian et al. [30]pro-
vide a detection method at the file level using parsed graphs
and graph neural networks. The work at different granularity
levels lacks a unified framework, which our work attempts
to address. Our work designs the vulnerability detection task
as a unified framework by learning function call relationships
through graph neural networks and code semantics through
pre-trained models.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose the MGVul framework, which
enhances detection performance at the function-granularity and
shows promising results at the file and project granularities.
Our framework combines pre-trained language models and
GGNN, using a multi-expert mixture model and pairwise
training strategy. Evaluations show our method outperforms
baseline models. However, precision is notably lower than re-
call, possibly due to the imbalance in the number of vulnerable
and non-vulnerable classes. In the future, we plan to adopt data
augmentation methods to reduce class imbalance. At the same
time, the introduction of graph neural networks may lead to
efficiency problems, which is the focus of the future research.
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