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Abstract—Recent advancements in deep learning have signifi-
cantly impacted breast cancer diagnosis, enhancing the accuracy
and efficiency of detection and classification. In this study, we
applied various attention mechanisms in different configurations
to evaluate their effects on our model’s performance, specifically
in terms of F1 score and accuracy. We utilized ConvNeXt for
initial feature extraction, followed by the implementation of
attention mechanisms such as SRM (Spatial Relation Module),
GCT (Global Contextual Transformer), LCT (Local Contextual
Transformer), and Triplet Attention. These attention mechanisms
were arranged both in parallel and series configurations to
explore their impact on feature extraction. Our experiments
demonstrated that the choice and arrangement of attention
mechanisms significantly influenced the model’s performance,
with the Triplet LCT in the parallel configuration achieving the
highest accuracy and F1 score.

I. INTRODUCTION

Breast cancer is a disease where cells in the breast grow
uncontrollably. It is one of the most common cancers affecting
women worldwide, though it can also occur in men. Breast
cancer can manifest in various forms, primarily categorized
into benign (non-cancerous) and malignant (cancerous) masses
and calcifications.Benign masses are non-cancerous growths
in the breast. They typically have smooth, well-defined edges
and are often oval or circular in shape. Common types of
benign breast masses include fibroadenomas and cysts. While
benign masses are not life-threatening, they may require
monitoring or removal if they cause discomfort or other
issues.Malignant masses, on the other hand, are cancerous
and can invade surrounding tissues. These masses often have
irregular shapes and poorly defined edges. Malignant tumors
can spread (metastasize) to other parts of the body, making
early detection and treatment crucial. The most common types
of malignant breast tumors include invasive ductal carcinoma
(IDC) and invasive lobular carcinoma (ILC)[1].

Breast calcifications are small deposits of calcium
that appear as white spots on a mammogram. They
are common, especially in women over 50, and can
be classified into two types: microcalcifications and
macrocalcifications.Microcalcifications are tiny calcium
deposits that may indicate the presence of breast cancer,
particularly ductal carcinoma in situ (DCIS), which is an

early form of breast cancer. These calcifications often appear
in clusters and may require further investigation through
a biopsy to determine if they are benign or malignant
.Macrocalcifications are larger, coarser calcium deposits that
are usually benign. They are often associated with aging, past
injuries, or benign breast conditions such as fibroadenomas
or cysts. Macrocalcifications typically do not require further
testing unless they appear in a suspicious pattern.

Machine learning (ML) has become a pivotal tool in the
fight against breast cancer, offering significant advancements
in early detection, diagnosis, and treatment planning. Here are
some key areas where machine learning is making an impact:

Machine learning algorithms, particularly deep learning
models like convolutional neural networks (CNNs), are being
used to analyze mammograms, ultrasounds, and MRI scans
to detect breast cancer at an early stage. These models can
identify patterns and anomalies that may be indicative of
cancer, often with higher accuracy than traditional methods.
For instance, models like Inception-V3 and ResNet-50 have
shown superior performance in identifying various breast
tissue types and detecting abnormalities[2].

ML techniques are also employed to classify breast lesions
as benign or malignant. This involves analyzing features
from medical images to determine the nature of the lesion.
Advanced models, such as those incorporating transfer
learning and ensemble methods, have demonstrated high
accuracy in distinguishing between benign and malignant
masses. For example, a study using a deep ensemble-based
model achieved 99% accuracy on the MIAS datase[3].
Predictive models using machine learning can assess the
risk of breast cancer recurrence. By analyzing patient data,
including tumor characteristics and treatment history, these
models can provide valuable insights into the likelihood of
cancer returning. Algorithms like AdaBoost have been used
to develop robust prediction models, helping clinicians make
informed decisions about follow-up care and treatment[4].

Attention mechanisms have become a crucial component
in enhancing the performance of deep learning models for
breast cancer detection and classification. These mechanisms



help models focus on the most relevant parts of the input
data, improving accuracy and interpretability. Here are some
key applications of attention mechanisms in breast cancer
research: Attention mechanisms can refine the feature ex-
traction process by emphasizing important regions in medi-
cal images. For instance, the Efficient Channel Spatial At-
tention Network (ECSAnet) integrates a convolutional block
attention module (CBAM) to improve the classification of
histopathological images. This approach has shown superior
performance compared to traditional models like AlexNet
and ResNet50[5].Incorporating attention mechanisms into deep
learning models can significantly boost classification accuracy.
The Residual Attention Neural Network for Breast Cancer
Classification (RANN-BCC) utilizes residual neural networks
with attention layers to classify invasive ductal carcinoma
(IDC) and non-IDC. This model achieved high accuracy, recall,
precision, and F1 score, outperforming other models such as
CNN and AlexNet[6].

II. PREPROCESSING

A. Data

The DDSM (Digital Database for Screening Mammography)
and the CDD (Curated Breast Imaging Subset of DDSM)
datasets are essential resources in breast cancer research and
diagnosis.

The DDSM dataset comprises 2,620 scanned film mammog-
raphy studies, including normal, benign, and malignant cases
with verified pathology information. Its extensive scale and
ground truth validation make it invaluable for developing and
testing decision support systems. However, historical limita-
tions such as non-standard compression files and imprecise
lesion annotations have hindered direct comparisons and repli-
cation of results.

In contrast, the CDD dataset is an updated and standardized
version of DDSM, curated by trained mammographers. It
includes decompressed images converted to DICOM format,
improved ROI segmentation, and precise pathologic diagnoses
for training data. By addressing the limitations of DDSM,
CDD provides a consistent evaluation platform for future
CADx (computer-aided diagnosis) and CADe (computer-aided
detection) research in mammography.

By integrating the diverse breast tissue variations from
DDSM with the structured clinical information provided by
CDD, researchers can develop sophisticated machine learning
models. These models can accurately differentiate between
benign and malignant lesions, leading to earlier detection and
improved treatment strategies. Ultimately, this combination
enhances breast cancer diagnosis and patient care.

B. Preprocessing

The original datasets contained small regions extracted from
entire breast images, including some artifacts and irrelevant
portions. To improve data quality, we meticulously removed
these non-useful regions, ensuring that the dataset only con-
tained relevant information for training and evaluation.

Fig. 1. Calcification images

We carefully divided the data into training, validation,
and test subsets, selecting samples from both mass (be-
nign/malignant) and calcification (benign/malignant) cases.
This balanced approach allowed the model to learn from a
diverse set of scenarios, ensuring robustness. Additionally,
we performed augmentations such as flipping, rotation, and
brightness adjustments to enhance the dataset. Images in Figure
1 depict calcification, while images in Figure 2 show masses.
To enhance model generalization, various augmentations were
applied to the training data. Images were horizontally or
vertically flipped to create additional variations. Random rota-
tions were introduced to simulate different orientations, and
brightness adjustments were made to account for varying
lighting conditions. These augmentations help the model learn
from a more diverse set of scenarios, improving its robustness
and performance.

Fig. 2. Mass images

C. Augmentations

To enhance model generalization, various augmentations
were applied to the training data. Images were horizontally
or vertically flipped to create additional variations. Random
rotations were introduced to simulate different orientations,
and brightness adjustments were made to account for varying
lighting conditions. These augmentations help the model learn
from a more diverse set of scenarios, improving its robustness
and performance.

III. METHODOLOGY

For our methodology, we began by utilizing ConvNeXt for
feature extraction. ConvNeXt, known for its robust perfor-



TABLE I
DATA DISTRIBUTION

Partition Calcification
(Benign)

Mass
(Benign)

Calcification
(Malignant)

Mass (Ma-
lignant)

Pathology (Ma-
lignant/Benign)

Total

Train 1007 768 541 655 1775/1196 2971
Test 110 99 75 87 209/162 371
Validation 110 99 74 85 209/162 371

mance, allowed us to effectively capture and represent the
essential features of our data. This initial step was crucial in
ensuring that our subsequent processes were built on a strong
foundation. Following the feature extraction, we employed

Fig. 3. Parrel Configaration

attention mechanisms to further refine and extract features
in various forms. Attention mechanisms have the ability to
focus on different parts of the input data, making them highly
effective for our purposes. We explored different configurations
by arranging two attention mechanisms both in parallel and in
series. This approach enabled us to investigate how different
arrangements could impact the feature extraction process.

In our experiments, we tested several types of attention
mechanisms, each offering unique advantages. The first atten-
tion mechanism we tested was the Spatial Relation Module
(SRM). SRM focuses on capturing spatial relationships within
the data, which can be particularly useful for tasks that require
an understanding of spatial context. Next, we experimented

Fig. 4. Series Configaration

with the Global Contextual Transformer (GCT). GCT is
designed to capture global contextual information, allowing
the model to understand the broader context of the data.
This can be beneficial for tasks that require a comprehensive
understanding of the entire input.

We also tested the Local Contextual Transformer (LCT),
which focuses on capturing local contextual information. LCT
is particularly useful for tasks that require a detailed under-
standing of specific parts of the input data. By combining

LCT with other attention mechanisms, we aimed to achieve
a balance between local and global context.

Lastly, we experimented with Triplet Attention, which is
designed to capture relationships between triplets of data
points. This unique approach allowed us to explore how inter-
actions between multiple data points could enhance the feature
extraction process. By systematically testing these different
attention mechanisms, we were able to identify the most
effective configurations for our specific use case, ultimately
enhancing the performance of our model.

IV. EXPERIMENT SETTING

Our current experiment was conducted on a Linux operating
system, utilizing a GTX 2090 GPU to ensure efficient process-
ing and model training. We employed Python and PyTorch
as our primary programming and deep learning frameworks,
respectively. These tools provided the flexibility and robustness
needed to implement and test various attention mechanisms in
our model.

For the optimization process, we used the Adam optimizer
combined with a cosine annealing learning rate schedule. This
approach helped in achieving a smooth convergence during
training. The model was trained for 100 epochs with a batch
size of 8, allowing us to effectively balance computational
efficiency and model performance. This setup enabled us to
thoroughly evaluate the impact of different attention mecha-
nisms on our model’s accuracy and F1 score.

V. METRIC

Accuracy is a metric that measures how often a machine
learning model correctly predicts the outcome. It is calculated
as the ratio of correctly predicted instances (both true positives
and true negatives) to the total number of instances. The
formula for accuracy is:

Accuracy =
Number of correct predictions
Total number of predictions

In binary classification, it can also be expressed as:

Accuracy =
TP + TN

TP + TN + FP + FN

Where:
• TP: True Positives
• TN: True Negatives
• FP: False Positives
• FN : False Negatives
The F1 score is a metric that combines precision and recall

into a single value, providing a balance between the two. It



Model type Accuracy F1 Score Loss F1 Score (Test)
Base model - 0.78 0.7655 0.557 0.74

SRM GCT 0.787 0.7736 0.5017 0.74
Parrel tripple gct 0.787 0.7736 0.4812 0.72

tripple lct 0.7924 0.7818 0.5583 0.75
tripple gct 0.787 0.7669 0.6313 0.75

Series tripple lct 0.7843 0.7575 0.6793 0.752
SRM GCT 0.7789 0.7696 0.4913 0.758

TABLE II
MODEL PERFORMANCE COMPARISON

is particularly useful when you need to account for both false
positives and false negatives. The F1 score is the harmonic
mean of precision and recall, calculated as:

F1 Score = 2× Precision × Recall
Precision + Recall

where:
• Precision is the ratio of true positive predictions to the

total number of positive predictions (true positives + false
positives).

• Recall (or sensitivity) is the ratio of true positive predic-
tions to the total number of actual positive instances (true
positives + false negatives).

VI. RESULTS

The Base model achieved an accuracy of 0.78, an F1 Score
of 0.7655, a loss of 0.557, and an F1 Score (Test) of 0.74.
This serves as a benchmark for evaluating the performance of
the other models.

In the Parallel configuration, the Triplet LCT model stood
out with the highest accuracy of 0.7924 and an F1 Score of
0.7818. However, it also had a relatively high loss of 0.5583.
The SRM GCT model in this configuration had a slightly
lower accuracy of 0.787 and an F1 Score of 0.7736, but it
achieved the lowest loss of 0.5017 among the parallel models.
The Triplet ACT model also performed well with an accuracy
of 0.787, an F1 Score of 0.7669, and a loss of 0.6313.

In the Series configuration, the SRM GCT model achieved
an accuracy of 0.7789, an F1 Score of 0.7696, and the lowest
loss of 0.4913 among all models. The Triplet LCT model
in this configuration had a higher accuracy of 0.7843 and
an F1 Score of 0.7575, but it also had the highest loss of
0.6793. Overall, the parallel configuration models generally
performed better in terms of accuracy and F1 Score compared
to the series configuration models. The choice of attention
mechanism and its arrangement significantly impacted the
performance metrics, highlighting the importance of selecting
the right configuration for the specific use case.

VII. CONCLUSION

In our experiments, the addition of attention mechanisms to
the models demonstrated noticeable improvements in perfor-
mance metrics such as accuracy and F1 score. By incorporating
attention mechanisms like SRM, GCT, and LCT, we were
able to enhance the model’s ability to focus on relevant

features, leading to better overall performance. These attention
mechanisms allowed the model to capture both local and global
contextual information, which is crucial for accurate feature
extraction in complex datasets.

Among the various configurations tested, the combinations
involving Triplet Attention yielded the most significant per-
formance gains. The Triplet Attention mechanism, when com-
bined with other attention mechanisms like GCT and LCT,
provided a more comprehensive understanding of the relation-
ships between data points. This resulted in higher accuracy
and F1 scores compared to other configurations. The parallel
configuration of Triplet LCT, in particular, achieved the high-
est accuracy and F1 score, highlighting the effectiveness of
this combination in improving model performance.Overall, the
integration of attention mechanisms, especially in combination
with Triplet Attention, proved to be a valuable approach in
enhancing the performance of our models.
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