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Abstract—Achieving high performance in far-field speaker ver-
ification is challenging due to the scarcity of data and prevalence
of low-quality labels. A common approach is to use a semi-
supervised learning framework. A pre-trained near-field speaker
model extracts embeddings of unlabeled far-field speakers, and
clustering methods generate pseudo-labels for fine-tuning. The
accuracy of pseudo-label generation through clustering and the
domain adaptation during fine-tuning are critical to this semi-
supervised learning framework. In this paper, we propose a
method that combines Uniform Manifold Approximation and
Projection (UMAP) with a community detection algorithm for ef-
ficient dimensionality reduction and clustering. UMAP preserves
the structural distribution of high-dimensional data, facilitating
better clustering. We conduct domain alignment in the distance
metric space to achieve domain adaptation during fine-tuning,
referring to this approach as distance metric domain adaptation
(DMDA). We evaluate the effectiveness of the dimensionality
reduction community detection agorithm and the on VoxCeleb
(pre-trained) and FFSVC (fine-tuned) datasets. Experimental
results demonstrate that the accuracy of generating pseudo
labels is improved by using the reduced dimensional community
detection algorithm. Additionally, the DMDA method effectively
reduces domain mismatch issues during the fine-tuning process.

I. INTRODUCTION

Speaker verification (SV) aims to verify whether two utter-
ances are spoken by the same person [1], [2]. In recent years,
deep learning has achieved significant success in speaker veri-
fication tasks [3], [4]. Speaker verification systems have shown
remarkable improvement from the traditional i-vector method
[5] to the DNN-based x-vector method [6]. Training x-vector-
based speaker verification networks requires a large amount
of well-labeled data. Due to difficulties in data recording and
labeling, as well as noise interference, the performance of SV
systems significantly degrades in far-field environments. Semi-
supervised learning (SSL) [7] is commonly used to reduce the
reliance on labeled data. A common SSL approach in far-field
speaker verification involves first training an SV model using
abundant near-field data. The well-trained near-field SV model
is then used to extract speaker embeddings, which are clustered
to obtain pseudo-labels. Finally, supervised fine-tuning is per-
formed on the SV model using both pseudo-labeled far-field
data and near-field data. However, the accuracy of pseudo-
labels largely depends on the robustness of the clustering
algorithm and the reliability of the pre-trained model from
the source domain. Additionally, domain mismatch between
near-field and far-field data during fine-tuning also significantly
affects the accuracy of the SV model.

Existing clustering methods typically use unsupervised ap-
proaches, such as K-means [8], Spectral Clustering [9], and
Agglomerative Hierarchical Clustering (AHC) [10]. These
methods rely on specific assumptions and require estimating
the value of k in advance. For clustering large-scale datasets,
traditional unsupervised methods and recent approaches like
Graph Convolutional Networks (GCN) [11] and community
detection algorithms [12] are commonly used. Chen et al.
[13] propose a semi-supervised learning approach to improve
speaker identification accuracy by label propagation on a graph
encoding pairwise similarity for all labeled and unlabeled utter-
ances. Tong et al. [14] apply graph convolutional networks to
the constructed affinity graph, fully utilizing the local subgraph
information to obtain the representation of speaker embed-
dings. Recently, community detection algorithms [15]–[17]
have also been performing well in large-scale unsupervised
speaker clustering. Chen et al. [18] utilize Infomap to perform
clustering and obtain the initial pseudo labels. The Leiden [17]
algorithm also ensures that all communities are well-connected
in speaker clustering.

To reduce the domain mismatch problem, recent approaches
have been proposed in the field of speaker verification. One
common approach is to improve the fine-tuning strategy. X.
Qin et al. [19] use both source and target domain data to
fine-tune the pre-trained model jointly. Y. Zheng et al. [20]
reserve the speaker weights in the pre-training stage, which
are then utilized in the fine-tuning stage. Another approach
focuses on enhancing the back-end processing techniques of
the SV system. Unsupervised PLDA [21] adapts the PLDA
model’s covariance matrices to align with domain-invariant
data. Aligning embedding vectors across multiple domains by
minimizing inter-domain cosine distance or maximizing mean
discrepancy (MMD) [22] is also a common domain adapta-
tion method. Recently, methods that align the distribution of
distances within and between speakers have shown to better
match the data distribution for SV task [23], [24]. Additionally,
learning domain-invariant speaker representations [25]–[27] is
another notable method for reducing domain mismatch.

In this paper, we employ the TAU community detection al-
gorithm, combined with Uniform Manifold Approximation and
Projection (UMAP) for dimensionality reduction to achieve
the most efficient and accurate clustering results. To mitigate
the issue of domain mismatch, we propose distance metric
domain adaptation (DMDA), conducting domain alignment in
the distance metric space and use Discriminative Joint Prob-



ability Maximum Mean Discrepancy (DJP-MMD) to measure
the intra-speaker and inter-speaker differences. Experimental
results on the FFSVC dataset demonstrate the improvement
in clustering performance and the effectiveness of the DMDA
method in reducing domain mismatch during the fine-tuning
process.

II. METHODS

A. Uniform Manifold Approximation

UMAP is a dimensionality reduction algorithm based
on graph theory and manifold learning that maps high-
dimensional data to low-dimensional space for visualization
and analysis. The algorithm relies on a theoretical frame-
work involving Riemannian geometry and algebraic topology.
UMAP learns a mapping from the high-dimensional data
distribution to a low-dimensional space, preserving the sig-
nificant topological structures of the original high-dimensional
space. We employ UMAP to learn the underlying manifold
structure and construct a weighted k-nearest neighbor graph.
Let X = {x1, x2, ..., xn} represent the extracted unlabeled
speaker embeddings, where the connectivity of the neighbor-
hood graph is determined by the edge weights. To construct
the weighted k-nearest neighbor graph, we can calculate the
weights between the speaker embeddings and their k nearest
neighbors as follows:
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where d(xi, xij ) denotes the distance between embeddings xi

and xij , ρi is a distance threshold for embedding xi, and σi

is a scaling parameter for embedding xi.
After approximating the manifold in the high-dimensional

space, the next step in UMAP is to project it into a low-
dimensional space. Once the manifold structure has been
learned, it is necessary to define a minimum distance between
the embedded points, to avoid multiple overlapping points.
UMAP can find a good low-dimensional manifold representa-
tion by minimizing the cross-entropy cost function. Denoting
the adjacency matrix of the graph as E, our ultimate goal
is to find the optimal edge weights in the low-dimensional
representation. These optimal weights emerge as a result of
minimizing the cross-entropy function:
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where wh(e) and wl(e) denote the high-dimensional and
low-dimensional edge weights, respectively.

B. TAU Community Detection Agorithm

We use the TAU community detection algorithm for clus-
tering. This algorithm is an efficient method for modularity
optimization, combining the greedy optimization approaches
of Louvain and Leiden with genetic algorithms to better
explore the solution space. We set each speaker embedding

as a node in the community detection network, using cosine
similarity scores between embeddings as edge weights. The
TAU algorithm utilizes the Leiden algorithm to detect com-
munities in the input graph through modularity optimization.
The modularity optimization function of Leiden is expressed
as follows:
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Where Q is the modularity score, m is the total number of
edges, Aij represents the adjacency matrix, ki and kj are the
degrees of nodes i and j, respectively, and δ(C(i), C(j)) is 1
if nodes i and j are in the same community, and 0 otherwise.

After the initialization step of generating initial individual
partitions, the algorithm iteratively performs the following
steps:

Step1. Applying Leiden to optimize each individual parti-
tion.

Step2. Evaluating fitness and selecting individuals.
Step3. Performing crossover and mutation on the popula-

tion.
Step4. Migrating new individuals into the population.

C. Distance Matric Domain Adaptation

We aim to reduce the domain mismatch issues in the SV
system during fine-tuning. As shown in Fig. 1

1) Pre-training: In the pre-training stage, we train a deep
speaker embedding model using out-of-domain data. To en-
hance the model’s discrimination ability and improve general-
ization, we employ the angular margin softmax (AM-softmax)
[28]loss function.

2) DJP-MMD for domain adaptaion: The issue of label
mismatch between the source domain and the target domain
cannot be resolved merely by aligning distributions at the
feature level, which may prevent the model from learning
domain-invariant features. After obtaining the pre-trained SV
model, we use the speaker labels from the source domain and
the pseudo-labels from the target domain to construct sample
pairs both within and between speakers. We then use cosine
distance to estimate the distance distribution between these
sample pairs. We measure the distance between the source
domain and the target domain distributions using DJP-MMD.

d(Ds,Dt) = MT − µMD, (4)

where µ > 0 is a trade-off parameter. MT measures the
transferability between the same class in different domains, and
MD measures the discriminability between different classes in
different domains.

We compute MT using MMD, aiming to measure the overall
distribution difference between the source domain p(s) and the
target domain p(t).
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Fig. 1. Overview of the proposed DMDA method with pairwise-distance distribution alignment.
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where Ts and Tt are the numbers of samples from the source
and target domains in a mini-batch. k(., .) denotes the radial
basis function (RBF) kernel.
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where C is the total number of classes. Ts,c and Tt,c are the
numbers of samples from the source and target domains in
class. sc,n and sc,m are samples from the source domain in
class. tc,n and tc,m are samples from the target domain in
class.

The vectors s and t can represent either within-class or
between-class distance vectors. After computing the two DJP-
MMD distances, we obtain the final DJP-MMD loss.

LDJP-MMD = LDJP-MMD(p(s
wc), p(twc))

+ LDJP-MMD(p(s
bc), p(tbc))

(7)

where swc and twc are the within-class distance vectors from
the source and target domains, respectively. sbc and tbc are

the between-class distance vectors from the source and target
domains, respectively.

The overall objective of DMDA is the weighted sum of the
AM-softmax loss and the DJP-MMD losses:

LDMDA = LDJP-MMD + λLAM-softmax (8)

III. EXPERIMENTS

A. Datasets and Evaluation Metrics

We conduct experiments on the VoxCeleb 1&2 [29] and
FFSVC [30] datasets. The VoxCeleb 1&2 dataset serves as
the large-scale dataset for pre-training near-field models. The
FFSVC2022 supplement is used as the unlabeled far-field tar-
get domain dataset. We evaluate the model on the development
trials and evaluation trials of FFSVC2022. We strictly adhere
to the competition requirements of FFSVC2022 Task 2, where
adjustments to hyperparameters and testing model performance
are only allowed on the development set. All data used is
consistent with the official baseline for FFSVC2022. All trial
pairs are single-channel speech segments. The evaluation set
consists of a large trials file and anonymized audios. The
experimental results are evaluated using the Equal Error Rate
(EER) and the minimum of the normalized detection cost
function (minDCF) with Ptarget = 0.01.

B. Implementation Details

We extract 80-dimensional log-mel filter banks features. The
frame length for all features is set to 25ms with a frame shift
of 10ms. Furthermore, we perform mean normalization within
a sliding window of three seconds.

In the pre-training stage, the chunk-size is set to 200
for sampling. We utilize the AdamW optimizer [31] with a
momentum of 0.9 and a weight decay of 5e-1. Additionally,
the margin gradually increases from 0 to 0.2. We use 1 GPU
with 512 mini-batch and an initial learning rate of 0.01 to train
all of our models.
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For community detection, we first use UMAP to reduce the
dimensionality by setting the number of neighbors in UMAP
to 20, allowing it to find low-dimensional manifolds in the
high-dimensional space. The UMAP algorithm reduces the
dimensionality to 60 in the new feature space. We use cosine
distance as the distance metric to compute sample similarities,
applying it consistently across all clustering methods. We
extract 40, 80, and 120 speakers from the supplement dataset
to compare the clustering performance under different numbers
of speakers.

For domain adaptation, we use a speaker-balanced sampling
strategy to construct intra-speaker and inter-speaker pairs,
ensuring that each speaker in a mini-batch contains the same
number of utterances. The batch size is set to 128, with
each speaker having 4 utterances. ResNet34 is chosen as the
base backbone. Cosine similarity scoring is used for backend
scoring, and all experiments are conducted on ASV-subtools
[32] and Wespeaker [33].

IV. RESULTS AND DISCUSSIONS

A. The Effectiveness of community detection

As shown in Table 1, we employ four different cluster-
ing methods with varying numbers of speakers and evaluate
their performance based on average precision, recall, and F-
score. When the number of speakers is 40, the traditional
K-means method performs well, achieving an accuracy that
surpasses that the basic community detection algorithm. When
the number of speakers increases to 80, the average precision
of traditional K-means clustering decreases significantly. At
120 speakers, the advantage of the community detection al-
gorithm becomes more apparent. The best clustering results
are achieved when TAU and UMAP are used together for
dimensionality reduction, and this method maintains good
performance as the number of speakers increases.

TABLE I
COMPARISON OF SPEAKER CLUSTERING PERFORMANCE FOR VARIOUS

NUMBER OF SPEAKERS

Nums Methods Precision Recall F-score

40

K-means 0.88 0.79 0.80
Infomap 0.84 0.77 0.80
Leiden 0.85 0.78 0.82
TAU 0.86 0.79 0.80

UMAP+TAU 0.90 0.83 0.87

80

K-means 0.85 0.77 0.81
Infomap 0.83 0.74 0.80
Leiden 0.84 0.76 0.82
TAU 0.85 0.77 0.82

UMAP+TAU 0.89 0.81 0.85

120

K-means 0.82 0.72 0.74
Infomap 0.83 0.76 0.77
Leiden 0.85 0.76 0.79
TAU 0.87 0.78 0.82

UMAP+TAU 0.89 0.80 0.84

B. The Effectiveness of DMDA

The experimental results are shown in Table 2. The ta-
ble compares the performance of different methods on the
FFSVC2022 development and evaluation datasets in terms of
EER and minDCF. We compare the DMDA method with the
FFSVC official baseline, the methods proposed by other partic-
ipating teams, and the Unsupervised PLDA approach. Vanilla
fine-tuning (using only the near-field dataset for fine-tuning)
shows improvement over the pre-trained model. This indicates
that fine-tuning the near-field speaker verification (SV) model
with a far-field dataset is an effective approach. However, this
process often leads to overfitting and catastrophic forgetting.
The use of domain adaptation techniques further enhances the
SV model’s performance. Unsupervised PLDA effectively re-
duces domain mismatch problems. When we use our proposed
DMDA method, the performance improves further. Notably,
we achieve the best results with the DJP-MMD distance.

TABLE II
PERFORMANCE COMPARISON OF DMDA AND OTHER METHODS ON

FFSVC2022 DATASETS

Method FFSVC2022 dev FFSVC2022 eval

EER% minDCF EER% minDCF

Official baseline 7.79 0.746 7.64 0.739
rank2 HiMia 5.59 0.563 5.34 0.566

rank1 SPEAKIN 5.98 0.500 6.21 0.523
Pre-trained 8.96 0.751 - -

Vanilla fine-tuning 6.74 0.749 7.14 0.695
Unsupervised PLDA 6.15 0.614 6.59 0.644

DMDA(MMD) 5.75 0.524 5.72 0.558
DMDA(DJP-MMD) 5.24 0.507 5.21 0.535

V. CONCLUSIONS

In this paper, we present a novel approach to enhance far-
field speaker verification through a semi-supervised learning
framework. By integrating Uniform Manifold Approximation
and Projection (UMAP) with a community detection algorithm,
we achieve efficient dimensionality reduction and clustering
while preserving the structural distribution of high-dimensional
data. Furthermore, we propose a distance metric domain adap-
tation (DMDA) method to address domain mismatch issues
during the fine-tuning process by aligning domains in the
distance metric space. We compare the accuracy of various
clustering methods with different numbers of speakers and
contrast the DMDA method with several domain adaptation
techniques. Experimental results demonstrate that our pro-
posed method effectively improves the performance of far-field
speaker verification.
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