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Abstract—The widespread application of speech data increases
the risk of speaker identity being compromised during speech
communication. To mitigate this risk and protect voice privacy,
we propose a system aimed at ensuring the security of speech
communication by avoiding the exposure of the actual speaker’s
identity. Our system comprises three main components. Firstly,
the non-target voice conversion system based on generative
adversarial network converts the original audio into the audio of
a non-existent person while preserving the speaker embedding of
the real audio. Secondly, during speech communication, we utilize
speech steganography techniques to embed the actual speaker
embedding into the converted audio. Finally, at the receiving end,
we extract the actual speaker embedding from the transmitted
converted audio and use it to reconstruct the original audio.
Experimental results validate the effectiveness of our system,
showcasing an innovative solution in the field of speech security.

I. INTRODUCTION

With the integration of voice user interfaces into devices like
Al speakers, speech data has become ubiquitous and widely
used in areas such as smart homes and conversational Al,
becoming an essential component of future lifestyles. However,
speech signals contain a wealth of speaker-specific informa-
tion, including sensitive attributes such as gender, identity, age,
emotions, and sensations. If intercepted during transmission,
these sensitive attributes can be extracted and used as biometric
features or for malicious purposes like identity theft or voice
spoofing [1]. The privacy protection of speech data has gained
increasing attention, particularly after the introduction of the
General Data Protection Regulation (GDPR) in the European
Union [2], emphasizing the importance of restrictions on
speech data usage and the implementation of security measures
[3].

Voice conversion (VC) refers to the various modifications
made to human speech, including the conversion of non-
linguistic information such as voice timbre, prosody, or pitch,
while keeping the linguistic information unchanged [4]-[6].
The primary purpose of voice conversion is to transform
the identity of one speaker into another while retaining the
linguistic content of the speech data. Speaker anonymization,
on the other hand, is a speech data processing technique aimed
at protecting the identity privacy of speakers [7], [8]. This
technique involves steps such as content/speaker separation and
voice conversion, to remove the speaker’s identity information

from the original speech while retaining other information
such as linguistic content. By using the technique of speaker
anonymization to convert the speaker’s identity to a randomly
generated non-existent identity, non-target voice conversion
can be achieved. While the method performs well in removing
speaker identity information, it is not sufficient to solely
rely on it for protecting voice privacy in the process of
speech communication. This is because when the receiving
end perceives the received converted speech as mismatched
with the known voice of the original speaker, doubts about the
authenticity of the speech information arise.

Therefore, in the process of speech communication, the
ability of the receiving end to reproduce the original speech
is a crucial issue for protecting speaker privacy using non-
target voice conversion techniques. To address this problem,
speech steganography can play an important role. Speech
steganography is a technique that embeds secret information
into audio signals. It modifies the speech data to increase
the capacity of hidden information, making it difficult for
external observers to detect the presence of additional informa-
tion. Speech steganography can be achieved through various
conventional methods, including LSB substitution [9], echo
hiding [10], and spread spectrum (SS) [11]. With the popularity
of deep neural networks, many recent studies have utilized
DNNs to embed and detect information [12]. By utilizing this
technique, we embed the speaker embedding of the original
speech data into the converted speech transmitted during the
communication process, making it possible for the receiving
end to reconstruct the original speech data.

In this paper, we propose a novel system, called the
non-target Conversion based Speech Steganography System
(CSSS), for protecting voice privacy in speech communication.
At the sender’s end, we employ a Generative Adversarial Net-
work (GAN) [13], [14] based speaker anonymization system to
create an artificial speaker embedding space and sample non-
existent voices, thereby achieving conversion of the identity
of the original speaker to a non-existent one. To reconstruct
the original speech at the receiver end without leaking iden-
tity information, we employ a Convolutional Neural Network
(CNN)-based speech steganography technique and introduce a
graph encoder [15] based on Graph Convolutional Networks
(GCN) [16] to embed the speaker embedding of the original
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Fig. 1.
the receiving end of the speech signal.

speech into converted speech for transmission. At the receiver’s
end, the system extracts the hidden speaker embedding and
combines it with the prosody information and speech-to-text
information of the original speech data to reconstruct the
original voice data.

The experimental results indicate that the speech processed
by identity conversion and information steganography in CSSS
has a high level of privacy, which can effectively prevent pri-
vacy attackers from identifying the real speaker. Additionally,
the reconstructed speech is close to the original speech in terms
of privacy and utility. Furthermore, the reconstructed speech
in CSSS demonstrates high intelligibility, and naturalness, and
maintains a high perceptual similarity to the original speech.
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Fig. 2. Tllustration of the pipeline for non-target voice conversion. By
extracting prosody information, and speech content information, and utilizing
cosine similarity to approximate the embedding of the original speaker,
randomly generated non-existent speaker identity can be obtained.

II. PROPOSED SYSTEM

In this section, we will provide a detailed description of
the specific architectural design of CSSS. Fig. 1 illustrates the
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Architecture of the proposed CSSS. The three sections from left to right correspond respectively to the transmitting end, the transmission process, and

three main components of CSSS, namely the identity conver-
sion, the speech steganography during speech communication,
and the speech reconstruction.

A. Identity Conversion

Prosody is closely related to speaker identity, affecting
an individual’s pitch and speaking speed. Pitch (Fp) and
speaking speed not only reveal information about the speaker
but also provide essential features for most machine learning
models that process speech. Therefore, in privacy-preserving
related tasks, maintaining a constant Fy could potentially
lead to identity leakage [17]. Ref. [18] overcame the trade-
off between privacy and utility of prosody by implementing
prosody cloning, and achieved an anonymization system with
high privacy and high pitch relevance. We adopt the speaker
anonymization pipeline proposed by [18] to achieve non-target
voice conversion, where the converted speech has a high pitch
similarity to the original speech while having a non-existent
speaker identity, as shown in the structure in Fig. 2.

The pipeline extracts three types of information from the
input speech: (i) prosodic information as pitch, energy, and
duration sequences; (ii) the linguistic content in the form of
phonetic sequences by using an Automatic Speech Recognition
(ASR) model; and (iii) the speaker information as speaker
embedding. Pitch and energy can be adjusted by multiplying
them with random offsets to further enhance privacy. Addi-
tionally, in the Speaker Embedding Anonymization section
depicted in Fig. 2, a GAN is employed to transform random
noise into speaker embeddings that are unrelated to the original
speaker, with the cosine distance ensuring sufficient similarity
between the generated vector and the vector corresponding
to the input speaker. Finally, the pipeline utilizes a Text-
to-Speech (TTS) model to re-synthesize the audio based on
language, prosody, and generated speaker information. The
resulting converted audio maintains the same language content
and prosody features as the original audio.

B. Speech Steganography

1) CNN-based Encoder Network: The traditional speech
steganography techniques are mainly divided into the time do-



main and transform domain methods. These methods, however,
encounter a couple of challenges. To begin with, the process
of manually selecting appropriate redundancy to conceal secret
information requires a considerable investment of manpower,
resources, and time. Additionally, the manual selection of
redundancy for embedding secret information may result in
noticeable alterations in the carrier, leaving behind discernible
traces.

Steganographic methods based on the Encoder-Decoder
structure of neural networks only require training the adopted
model. Utilizing a trained DNN for steganography and infor-
mation extraction in speech carriers can effectively overcome
the shortcomings of traditional methods. In the second part of
CSSS, we propose a CNN-based steganographic structure that
can embed vector data into audio, utilizing it as an Encoder-
Decoder network. The specific structure is shown in Fig. 3.
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Fig. 3. The structure of the encoder network. BN stands for Batch
Normalization.

The encoder network is a two-dimensional fully convolu-
tional neural network based on the U-Net [19] architecture. It
consists of a contraction part and an expansion part, which are
responsible for the downsampling and upsampling steps. The
contraction part comprises two downsampling modules, each
containing two 3 x 3 convolutional layers. Batch normalization
and Leaky ReLU [20] activation function are applied after
each convolutional layer. The last layer of the downsampling
module is a max-pooling layer, used to reduce the spatial
dimensions of the speaker embeddings and capture important
features. The expansion part consists of two upsampling mod-
ules, each primarily composed of two transpose convolutional
layers and two 3 x 3 convolutional layers. Transpose convo-
lutional layers are used to increase the spatial dimensions of
the speaker embeddings and recover fine-grained information.

In addition, each speaker embedding used for steganography
is a matrix of size 128 x 1.

2) Graph Encoder: To embed richer and more accurate
speaker embeddings in converted speech, we introduce the
graph encoder proposed in [15]. Specifically, we construct a
graph representation for each converted speech and encode
its structural details using a dual-layer GCN encoder. The
encoded graph features will complement the original feature
representation, thereby enhancing the accuracy and richness of
the overall feature representation.

The detailed structure of the graph encoder is shown in Fig.
4. After the converted speech undergoes Short-Time Fourier
Transform (STFT) operation, a sequence X is obtained. Each
element in the sequence X can be regarded as a node in the
graph and the connections between nodes can be characterized
by graph relationships.
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Fig. 4. Illustration of the graph encoder. Each orange dot represents an
element in the sequence X, while the value of A on each line reflects the
presence of structural details between two points.

Specifically, the graph encoder establishes a graph repre-
sentation G'(y) = (V4, Ay, Ay) for each sequence X € RNXT,
where )V, is the set of vertices. Each element in the sequence
is treated as a graph vertex, with its value representing the
signal residing on the vertex, i.e., the identifier of vertex X at
that location. The graph encoder maps the sequence X into the
graph domain and examines the structural details among the
elements. Assuming there exist structural details between the
iy, element indexed by vertex v; and the j;;, element indexed
by vertex vj, A(,7) is set to 1; otherwise, Ay(7,7) = 0.

C. Speech Reconstruction

At the receiving end, the speech reconstruction system
extracts the hidden speaker embedding from the transmitted
converted speech, which is achieved through the decoder
module. It is worth noting that the structure of the decoder
module is identical to the encoder module used in speech
steganography.

Besides, the architecture of the reconstruction module is
essentially identical to that of the pipeline in the first part of
CSSS. The key distinction lies in the reconstruction module’s
omission of GAN-generated artificial speaker embeddings.
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Fig. 5. Ilustration of the speech reconstruction module. The part highlighted
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Instead, it utilizes the speaker embedding extracted by the
decoder module to synthesize the original speech by incor-
porating the prosody and textual information of the converted
speech obtained through transmission. The structure is shown
in Fig. 5.

III. EXPERIMENTALS AND RESULTS

A. Setup

The training of the pipeline in the first part of CSSS follows
the experimental setup proposed in [18]. The ASR model is
trained using the VCTK dataset. We utilize SpeechBrain [21]
to train the embedding extractor on approximately 2,800 hours
of speaker-validated data from VoxCeleb 1 and 2 [22]-[24].
To synthesize speech, we train the TTS system using the
LibriTTS corpus [25]. For the GAN model, we augment the
LibriTTS data with the RAVDESS [26] and Emotion Speech
Dataset (ESD) [27] to obtain a larger and more diverse corpus
for training purposes. For the second part of CSSS, we use
VoxCeleb?2 to train our speech steganography network. For the
third part of CSSS, the speech reconstruction module utilizes
the pre-trained model from the non-target voice conversion
pipeline.

We validate the performance of CSSS using a subset of
LibriSpeech and VCTK as a test set and divided into trial
and enrollment data. The privacy of the transmitted speech
used for speech communication in CSSS is evaluated using
the Automatic Speaker Verification (ASV) attacker of Voice
Privacy Challenge 2020 (VPC’20) and measured in terms of
Equal Error Rate (EER). The utility of CSSS is measured using
the Word Error Rate (WER) of the Voice Privacy Challenge
2022 (VPC’22) ASR model. We compared the CSSS to the
original speech and to the main baselines of VPC’20 (BL 1)
and VPC’22 (BL 1.b).

B. Evaluation metrics

1) Objective Evaluation: Table 1 lists the EER results for
the privacy metric in the first column. For the first four items,
the closer the EER score is to 50%, the more difficult it
is for attackers to identify the true speaker of the audio.
Compared with the original data and the two baseline systems
of VPC, the steganographic converted speech used for speech
communication in CSSS achieved high privacy standards for
both datasets. As for the fifth item, the privacy metric of
the reconstructed speech is close to that of the original data,
indicating that CSSS can indeed recover the speaker’s identity
well.

TABLE I
OBJECTIVE EVALUATION RESULTS COMPARED TO BASELINE AND
PROPOSED SYSTEMS. IN THE FIRST FOUR ITEMS, THE CLOSER THE EER 1S

TO 50%, THE BETTER, AND THE LOWER THE WER, THE BETTER. THE

BEST SCORE IN EACH COLUMN IS HIGHLIGHTED IN BOLD. FOR THE FIFTH
ITEM, IT IS COMPARED SEPARATELY TO THE ORIGINAL, AND THE LOWER

THE EER AND WER, THE BETTER, INDICATING THE PROXIMITY OF THE
RECONSTRUCTED SPEECH BY CSSS TO THE ORIGINAL SPEECH.

\ EER(%) WER(%)
model

\ Libri VCTK  Libri VCTK
Original 4.39 3.19 4.15 12.82
VPC’20 - BL 1 34.44 31.30 6.73 15.23
VPC’22 - BL 1.b 31.80 24.11 6.08 15.60
CSSS’ Steg 48.92 51.74 5.93 11.07
CSSS’ Recon \ 5.66 3.70 \ 4.21 11.47

The second column of Table 1 shows that in the first four
items, steganographic converted speech still outperforms both
baseline systems in terms of the language content (WER)
metric. On the VCTK dataset, the WER is even reduced
by 13.65% compared to the original data. In addition, the
WER metrics of the fifth reconstructed speech are very close
to the original data. This indicates that the CSSS-processed
transmitted speech and reconstructed speech still have high
utility while achieving privacy preservation and restoring the
original speaker identity, respectively.

On the other hand, the accuracy of extracting the hidden
speaker embedding from the receiving end is very important
for the whole system. We use cosine similarity to measure
the similarity between the speaker embedding extracted by
the decoder module and the original speaker embedding. The
results in Table 2 show that the average cosine similarity over
the entire test set reaches 0.9999 in the system introducing
the graph encoder, with almost no loss of speaker embedding
information. However, the system with the introduction of
the graph encoder has a reduced SNR metric compared to
the system without it, but as the audio quality is still high,
and availability of accurate original speaker embedding at the
receiver is more critical for reconstructing the original speech.
Therefore, in order to achieve almost lossless transmission
of speaker embedding, the introduction of graph encoders is
necessary for CSSS.

2) Subjective Evaluation: In our task, human perception of
the original speech and the final reconstructed speech at the
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TABLE 11
RESULTS ARE DIVIDED INTO TWO CATEGORIES: CSSS WITH AND
WITHOUT GRAPH ENCODER. WE MEASURED THE AVERAGE SNR OF THE
STEGANOGRAPHIC SPEECH OBTAINED BY DIFFERENT SYSTEMS ON THE
ENTIRE TEST SET, AS WELL AS THE AVERAGE COSINE SIMILARITY
BETWEEN THE SPEAKER EMBEDDINGS EXTRACTED BY THE RECEIVING
END AND THE ORIGINAL SPEAKER EMBEDDINGS.

System | SNR of Speech | Cos Similarity
with Graph Encoder | 38.514 | 0.9999
w/o Graph Encoder | 55.557 | 0.9948

receiving end is crucial. This is because if the reconstructed
speech at the receiving end diverges significantly from the
original speech, users will doubt the authenticity of the trans-
mitted speech information. Therefore, we randomly selected 20
utterances from 10 different speakers from the test set. Each
utterance was presented along with the corresponding output
from different systems, to evaluate the perceptual similarity,
naturalness, and intelligibility of the speech obtained by dif-
ferent systems compared to the original speech. Then, at least
7 participants rated each metric on a 1-5 Likert scale.

TABLE III
MOS MEASURES THE NATURALNESS, INTELLIGIBILITY, AND PERCEPTUAL
SIMILARITY BETWEEN THE ORIGINAL UTTERANCE AND THE OUTPUT
UTTERANCE OF DIFFERENT SYSTEMS ON A SCALE OF 1-5. THE OUTPUTS
OF THE SECOND THROUGH FOURTH SYSTEMS ARE USED FOR PRIVACY
PROTECTION, AND THE SIMILARITY METRICS SHOULD BE AS LOW AS
POSSIBLE AND NOT COMPARABLE TO THE RECONSTRUCTED SPEECH, SO
THE THIRD COLUMN DOES NOT HAVE THE DATA HIGHLIGHTED IN BOLD.

\naturalness intelligibility similarity
‘MOS o ‘MOS o ‘MOS o

original 4.64 £0.75| 4.58 +043| - -
VPC’20 - BL 1 | 417 £0.67| 429 +0.79| 1.47 40.32
VPC’22 - BL 1.b| 3.71 +0.87| 440 40.56| 1.55 +0.44
CSSS’ Steg 432 £0.67| 4.67 +0.72| 1.43 +0.41
CSSS’ Recon | 4.48 +0.56| 4.65 +0.54| 423 40.61

Model

Based on the Mean Opinion Score (MOS) and its standard
deviation o shown in Table 3, it can be seen that compared
to other systems, the steganographic and reconstructed speech
from CSSS both have high intelligibility and naturalness,
and the reconstructed speech also achieves high perceptual
similarity with the original speech. This further confirms the
effectiveness of CSSS in restoring the original speech.

IV. CONCLUSION

In this paper, we present a system called CSSS (non-target
Conversion based Speech Steganography System), designed
to prevent the leakage of speaker identity information dur-
ing speech communication. The CSSS system is capable of
effectively concealing the speaker’s identity and embedding
the original speaker’s embedding information into converted
speech for transmission. Additionally, by extracting the hidden
speaker embedding information at the receiving end, CSSS
can successfully reconstruct the original speech. With these
designs, the CSSS not only avoids the leakage of speaker
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identity information during speech communication but also
prevents suspicions regarding the authenticity of the speech
information due to a mismatch between the converted speech
and the known sender’s voice. Through experimental validation
and manual evaluation, it is confirmed that the proposed
CSSS has an excellent performance in speaker embedding
steganography, and the speech reconstructed by the system has
high intelligibility, naturalness, and perceptual similarity with
the original speech.
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