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Abstract—Dysarthria is a motor speech disorder arising
from impairment of muscles that makes difficult to form or
pronounce words while speaking. In this paper, we introduce
an approach of multiband entropy based features extracted
from dysarthric speech signals for dysarthric severity level
classification. Generally, entropy is measured as the number
of bits of information contained in each message signal.
The information content of these signal measures how much
randomness or uncertainity contains in a signal. Extending this,
we use a frame-wise processing technique to divide the speech
signal into short frames which allows for detailed analysis of
different characteristics of speech signal. Furthermore we divide
frames into equal sub bands and compute the entropy and zero
mean entropy in each sub band using Gabor filterbank. It is
expected that the mean entropy of very low dysarthric severity is
lower compared to high dysarthric severity level indicating that
randomness is increasing as the severity level of dysarthria is
increasing. Experimental analysis were conducted on extensively
used dataset namely UA Speech. Results were carried out
by Convolutional Neural Network (CNN), along with 5-cross
validation. The results are compared against standard MFCC,
LFCC, and glottal source based LFRCC. It was observed that
the addition of entropy information boosted the performance
of MFCC by 4.38%, LFCC by 2.54%, and LFRCC by 1.88%
compared to their traditional techniques indicating the crucial
information captured by the entropy for dysarthria severity
classification.
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I. INTRODUCTION

Dysarthria is a speech disorder caused by impairments of
neurons that affects the muscles necessary for speech produc-
tion. These impairments can be caused by many conditions,
such as stroke, traumatic brain injury, Parkinson’s disease [1].
Dysarthria is manifested by a variety of speech abnormalities,
such as slurred speech, decreased intelligibility, changes in
speech rate, and changes in speech quality [2]. Given the
diverse etiology and presentation of dysarthria, accurately
classifying the severity of the disorder is essential for de-
veloping tailored treatment plans, monitoring patient progress,
and optimizing clinical resource allocation. Traditional meth-
ods of assessing dysarthria severity often rely on subjective
evaluations by clinicians , which can lead to variability and
inconsistency. These assessments depend on the clinician’s
experience and judgment, which can cause differences in
diagnosis and treatment outcomes. This demands the need for

automatic speech recognizers (ASR), and dysarthria severity
level classification can improve the performance of an ASR.

Earlier approaches focused on employing acoustic charac-
teristics such as features derived from fundamental or pitch
frequencies, formant frequencies and cepstral based techniques
like Mel Frequency Cepstral Coefficients (MFCC), Linear
Frequency Cepstral Coefficients (LFCC) for speech pathol-
ogy classification task. The ability of fundamental frequency
and formant frequency for dysarthria severity classification is
showcased in [3]. Furthermore, in [4], [S], and [6] the cepstral
based features such as MFCC, LFCC are explored which
contains the ability to capture global spectral characteristics.

Entropy measures the randomness or complexity of a signal,
making it useful for identifying the detailed variations in
speech patterns seen in different severity levels of dysarthria.
By looking at the entropy of speech signals, we can better
understand the severity of the disorder as the entropy metric
provides information related to amount of randomness present
in the signal which can help us learn about the controllability
of the voice production system for a dysarthric speaker and
provide a more accurate classification. Ultimately, this ap-
proach aims to provide reliable and effective tools for assessing
and managing dysarthria, improving the quality of life for
individuals affected by the disorder. By leveraging the power
of entropy-based features, we can achieve more accurate and
consistent severity classification, leading to better treatment
outcomes and enhanced communication abilities for those with
dysarthria. Previously, entropy based features are used for
various applications such as speech recognition [7], emotion
recognition [8], speech/music segmentation [9]. Furthermore,
[10] showcased the importance of entropy based features
for detection of hypernasal speech emphasizing the usage of
entropy based features for dysarthric speech. To the best of
our knowledge, no prior research has explored the ability of
multi band entropy for dysarthria severity classification.

The rest of the paper is organized as follows: Section 2
represents a brief technical details about the proposed zero
mean entropy using gabor filter bank, Section 3 gives the
details about the database used, classifiers used, and the
baseline features considered for this work. Section 4 consists
of the motivation for the application of entropy features for
dysarthric severity-level classification task. Section 5 contains



the experimental results and the work is concluded with results
and conclusion along with potential future research direction.

II. PROPOSED APPROACH
A. Shannon Entropy

Entropy is used to separate the voiced and unvoiced regions
of speech signal. The entropy is low for voiced region and
high for unvoiced region. Since speech is a non stationary
signal, the voiced and invoiced regions vary across each
frame. This motivated us to use the multiband entropy for
each frame as feature set instead of calculating the entropy
across the entire signal. Entropy measures, such as Shannon
entropy, quantify the unpredictability or randomness in the
distribution of signal amplitudes over time [11]. In speech
analysis, entropy reflects the variability and complexity of
vocal characteristics, including pitch, intensity, and timing.
Higher entropy values indicate greater disorder or irregularity
in speech production, which can be indicative of dysarthric
speech patterns characterized by inconsistent articulation and
prosody. Entropy H(X), is mathematically expressed as:

H(X) == p(x)log, p(x)

reX

where p(x) denotes the probability of the random variable X
taking on the value x In the context of information theory
and speech analysis, negative entropy values are not typically
encountered, as they would imply a negative amount of uncer-
tainty. Therefore, in practical applications like speech signal
analysis, entropy values are non-negative.

Entropy is calculated on speech signals by filtering them
through a Gabor filter bank, extracting the linear predictive
residual, and then computing the entropy of the filtered sig-
nal. Zero-mean entropy is chosen in order to emphasize the
variability of entropy values around the mean value. It is
calculated by subtracting the mean entropy of each frame from
its individual entropy values, providing a normalized measure
of entropy variation across frames [12]. It can be calculated
by,

ZeroMeanEntropy = H(X) —
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In this process of entropy calculation, Gabor filter banks are
used for their ability to capture both frequency and temporal
information from speech signals, which is crucial for analyzing
dysarthric speech [13]. They decompose the signal into vari-
ous subbands, allowing the extraction of fine-grained spectral
features. This multi-resolution analysis helps in capturing the
small patterns and variations in the speech signal, making
it easier to identify and quantify the irregularities associated
with dysarthria. By using a Gabor filter bank, the analysis
becomes more robust and comprehensive, as it effectively
highlights the relevant spectro-temporal characteristics that are
essential for accurate entropy measurement and subsequent
classification of dysarthric severity levels [14]. Furthermore,
fusion of traditional baseline features and zero mean multi
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Fig. 1. Block Diagram of Proposed Architecture

band entropy based features are performed. Fig. 1 contains
the block diagram of the proposed feature set.

The entropy and zero mean entropy features are extracted
using 40 Gabor filterbanks while segmenting the speech signal
using 20 ms window length with 10 ms hop length. These over-
lapping windows ensured effective temporal feature capture.
Entropy values were computed for each window, normalized
to achieve zero-mean entropy, and then arranged in descending
order to prioritize the most significant features, enhancing
the representation for subsequent processing or classification.
Furthermore, the top 20 and bottom 20 features from the
ordered sub bands are analyzed separately for entropy and zero
mean entropy.

By integrating entropy features with MFCC, LFCC, and
LFRCC, we enhance the analysis of dysarthric speech. Entropy
measures the unpredictability or variability in the speech
signal, which, when combined with these cepstral coefficients,
improves the sensitivity to different spectral characteristics.
This integration enables a more accurate assessment of speech
impairments, making it possible to better differentiate and
analyze variations in dysarthric speech.

ITII. EXPERIMENTAL SETUP

A. Dataset Used

In this study, we use two well-known datasets of dysarthric
speech: the Universal Access Dysarthria Speech Corpus (UA-
Speech) and the TORGO corpus. These datasets mainly feature
speech from individuals with spastic dysarthria, characterized
by symptoms such as breathiness, hypernasality, a harsh voice,
and incorrect articulation, making the speech difficult to under-
stand. The UA-Speech corpus includes recordings from eight
speakers (four males: MO1, M05, M07, and MQ9; and four
females: FO2, FO3, FO4, and F0S5). Each speaker contributes
465 utterances, selected from a total of 735 available utterances
per speaker. The UA corpus, contains 3537 speech samples
categorized into four severity levels: 930 samples of very low
severity, 926 samples of low severity, 930 samples of medium
severity and 751 samples of high severity. The TORGO corpus,
on the other hand, contains 1982 speech samples categorized
into three severity levels: 671 samples of very low severity,
627 samples of low severity, and 684 samples of medium
severity. For both datasets, we use 80% of the data for training
and 20% of the data for testing. The training and testing sets
are carefully split to ensure both contain a variety of words,



non-words, and sentences, providing a comprehensive assess-
ment of the model’s performance.We employ a 5-fold cross-
validation (CV) approach in our experiments. This involves
dividing the training data into five subsets, training the model
on four of these subsets, and validating it on the remaining
subset. This process is repeated five times, with each subset
used once for validation.

B. Classifier Used

The experiments used a Convolutional Neural Network
(CNN) classifier due to its effectiveness in capturing essential
spectro-temporal patterns in speech signals and its ability to
maintain translation invariance. The model was trained with a
stratified 5-fold cross-validation (CV) approach. This method
ensures that each fold has a data distribution similar to the
entire dataset, enhancing the robustness and reliability of the
training process. The data was split into 80% for training and
20% for validation, and the model was optimized using the
Adam optimizer, with categorical cross-entropy as the loss
function, and accuracy as the evaluation metric. The CNN
used two activation functions: ReLU and softmax. ReLU was
selected to improve learning speed and reduce computational
cost, while softmax was used in the final layer for multiclass
classification. To prevent overfitting, normalization layers and
dropout layers were added after each convolutional layer.
These layers help the model generalize better by reducing
the risk of becoming too specific to the training data, thereby
improving its performance on unseen data.

C. Baseline Features

In this study, MFCC, LFCC and LFRCC features are used
as baselines. MFCCs are widely used in speech processing and
are derived from the short-term power spectrum of a speech
signal. They transform the frequency components of the signal
to the Mel frequency scale, which is more aligned with human
auditory perception. This transformation captures important
aspects of speech that are relevant to human hearing, allowing
for effective representation of the spectral characteristics of
speech.

LFCCs, on the other hand, are computed using a linear
frequency scale rather than the Mel scale. This approach is
advantageous for capturing detailed frequency variations in the
speech signal. LFCCs especially in cases of speech disorders
like dysarthria is crucial due to its linear scale.

LFRCCs are derived from the residual signal obtained after
applying pre-emphasis and frame-wise processing [15]. The
process starts with pre-emphasizing the residual signal to
enhance high-frequency components, followed by dividing the
signal into frames and applying a windowing function to
each frame. The Fourier Transform is then used to compute
the magnitude spectrum of each frame. This spectrum is
passed through a linear filter bank, and the resulting energies
are logarithmically transformed. Finally, the Discrete Cosine
Transform (DCT) is applied to these log energies to obtain the
cepstral coefficients [16]. This method captures the detailed

spectral characteristics of the speech signal on a linear fre-
quency scale, providing a comprehensive representation of the
residual speech signal.

To ensure a fair comparison, 20-dimensional feature vectors
were extracted from the speech data using the librosa toolkit,
with a window length of 25 ms and a hop length of 10
ms for all feature sets. These features are commonly used
in speech processing because they effectively represent the
speech signal’s spectral characteristics, making them suitable
for analyzing dysarthric speech patterns [17]. By maintaining
consistent extraction parameters across all feature sets, the
study ensures that the comparative analysis of different features
is reliable and unbiased.

IV. SPECTROGRAPHIC ANALYSIS
A. Effect of entropy

Figure 2 illustrates the distribution of entropy across various
subbands and frames for the word "November.” Each subplot,
labeled from (a) to (d), demonstrates how entropy varies, with
subbands on the x-axis and frames on the y-axis. The z-axis
represents entropy values, using a color gradient from blue
(indicating lower entropy) to red (indicating higher entropy)
to make differences easily visible. Subplots (a) and (b) dis-
play considerable fluctuations with notable peaks and valleys,
which reflect a high degree of entropy variability. In contrast,
subplots (c) and (d) have smoother, more uniform surfaces,
indicating more consistent entropy values. The spectrogram
reveals that as dysarthric severity increases, the overall entropy
also increases. This pattern is evident in the transition from low
to high severity levels, where the entropy values become more
pronounced. This correlation between rising entropy levels and
increased dysarthric severity underscores the utility of entropy
as a metric for assessing the severity of dysarthria. The visual
representation provided by these plots offers valuable insights
into how entropy distribution changes with the progression of
the condition.

From Fig 3 the provided bar graphs illustrate the zero-mean
entropy of each subband for varying degrees of dysarthric
severity. Each subplot, from (a) to (d), represents different
severity levels, with the x-axis indicating the subband index
and the y-axis showing the zero-mean entropy values. Subplots
(a) indicates values are relatively low and stable indicating
quite regular and predictable character of speech. This minimal
variation around the mean can suggest controlled phonation.
Subplot (b) demonstrate that when compared to very low
severity, the variations around the mean value of entropy
increases indicating the phonatory instability, reflecting high
variability in entropy. Subplots (c) and (d) shows as the
severity increases, the fluctuations ncreases and the entropy
value increases indicating the irregularity and unpredictability
of the speech signal resulting in source phonation instability.
The higher entropy values can indicate severe noise in the
speech production system. The overall pattern reveals that as
the severity of dysarthria increases, the entropy values also
increase, highlighting a direct correlation between higher en-
tropy levels and greater dysarthric severity. This consistent rise
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Fig. 2. Spectrogram of multi band entropy for each frame of the word
”"November” for (a)very low, (b)low, (c)medium, and (d)high severity-level
dysarthric signal, respectively. X-axis represents the sub-band index, Y-axis
represents frame index, and Z-axis represents the entropy value, respectively.
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Fig. 3. Effect of entropy for the word "November” for (a)very low, (b)low,
(c)medium, and (d)high severity-level dysarthria speaker. X-axis represents the
sub-band index and Y-axis represents the zero mean entropy, respectively.

in entropy with increasing severity offers valuable insights into
the relationship between entropy distribution and dysarthric
speech impairment.

Together, these analyses clearly demonstrate that as
dysarthria severity increases, speech becomes more chaotic and
disordered, with higher and more variable entropy values.

V. EXPERIMENTAL RESULTS
Table I indicates the classification accuracy of baseline

features using cnn classifier.

TABLE I
FoLD, TEST, PRECISION (P), RECALL (R), F1-SCORE FOR BASELINE
FEATURES USING CNN CLASSIFIER ON UA-SPEECH AND TORGO.

Data Features | Fold Acc. Acc. P R F1
MFCC 93.09 93.36 | 93.89 | 93.38 | 93.56
UA-Speech LFCC 94.11 95.45 | 95.63 | 95.60 [ 95.57
LFRCC 92.01 93.78 | 93.55 | 94.06 | 93.71
MFCC 85.71 88.62 | 89.40 | 88.64 | 89.01
TORGO LFCC 91.58 91.82 | 91.51 | 91.02 | 91.26
LFRCC 92.43 94.20 | 93.96 | 94.19 [ 94.07

Table 1 contains the fold test accuracies of baseline features.
For AU Speech dataset, LFCC outperforms both MFCC and
LFRCC baseline features by a fold (test) accuracy margin
of 1.02% (2.09%), 2.1% (1.67%) and for TORGO dataset,
LFRCC outperforms both MFCC and LFCC baseline features
by a fold (test) accuracy margin of 6.72% (5.58%), 0.85%
(2.38%). This might be because dysarthric speech is seen to

have turbulent noise in a higher frequency range and thus, the
linear frequency scale in LFCC and LFRCC offers relatively
better frequency resolution than its MFCC counterpart to
capture the spectral details at higher frequency region.

TABLE 11
FOLD, TEST, PRECISION (P), RECALL (R), F1-SCORE FOR 40 SUB BAND
FEATURES ALONG WITH FIRST 20 AND LAST 20 OF DECREASING
ARRANGED SUB BAND ENTROPY AND ZERO MEAN ENTROPY FEATURES
USING CNN CLASSIFIER ON UA-SPEECH.

Features Fold Acc. Acc. P R F1
Entropy 67.77 77.11 | 76.86 | 77.13 | 76.65
Entropy (first 20) 57.71 59.46 | 59.71 | 59.46 | 59.56
Entropy (last 20) 50.95 58.47 | 58.06 | 59.26 | 56.62
Zero mean entropy 82.75 86.15 | 86.65 | 85.87 86
Zero mean entropy (first 20) 79.86 80.36 | 80.40 | 80.04 | 80.17
Zero mean entropy (last 20) 68.86 71.89 | 71.64 | 72.57 | 70.66
TABLE III
FOLD, TEST, PRECISION (P), RECALL (R), F1-SCORE FOR 40 SUB BAND
FEATURES ALONG WITH FIRST 20 AND LAST 20 OF DECREASING
ARRANGED SUB BAND ENTROPY AND ZERO MEAN ENTROPY FEATURES
USING CNN CLASSIFIER ON TORGO.
Features Fold Acc. Acc. P R F1
Entropy 71.36 74.81 77 75.53 | 74.86
Entropy (first 20) 65.55 70.19 70.00 70.60 | 69.16
Entropy (last 20) 60.28 62.24 64.81 60.10 | 56.84
Zero mean entropy 90.93 91.93 92.15 92.17 | 91.93
Zero mean entropy (first 20) 89.14 84.88 | 886.25 | 85.38 | 84.51
Zero mean entropy (last 20) 68.86 71.89 71.61 72.57 | 70.66
TABLE IV
FOLD, TEST, PRECISION (P), RECALL (R), F1-SCORE FOR FEATURE LEVEL
FUSION USING CNN CLASSIFIER ON UA-SPEECH AND TORGO.
Data Features Fold Acc. Acc. P R F1
UA- MFCC+Zero mean 95.65 97.74 | 97.43 | 97.61 97.51
Speech LFCC+Zero mean 94.13 97.79 | 97.33 | 97.11 | 97.20
LFRCC+Zero mean 94.85 95.66 | 94.46 | 94.38 | 94.41
MFCC+Zero mean 91.10 96.97 | 97.06 | 96.96 | 96.98
TORGO LFCC+Zero mean 94.51 94.18 [ 92.43 | 90.87 | 91.21
LFRCC+Zero mean 94.24 9596 | 96.14 | 96.33 | 96.16

Table 2 and table 3 indicate the accuracies for various forms
of entropy and zero mean entropy for UA speech and TORGO
datasets, respectively. The first 20 and last 20 features indicate
the top and bottom 20 features from the descending arranged
sub band entropy values. It can be seen that zero mean entropy
outperforms the entropy feature by 9.04% for UA Speech and
17.12% for TORGO datasets. Furthermore, it is evident that
the information across all the 40 subbands is essential in order
to classify the severity level accurately.

Additionally, feature level fusion of baseline features is
performed with best performing entropy feature i.e., zero mean
entropy and the fusion based features outperform baseline
features by 4.38% (8.35%) for MFCC, 2.34% (2.36%) for
LFCC, 1.88% (1.76%) for LFRCC on UA Speech (TORGO),
respectively. These experimental results sit right with the spec-
trographic analysis and emphasize the importance of inclusion
of entropy based features for dysarthric severity classification.




These consistent improvements across both datasets high-
light the effectiveness of integrating zero mean entropy into
feature extraction. This technique not only refines the represen-
tation of the audio data but also enhances the overall accuracy
of speech recognition models, making them more robust and
reliable. The observed gains in accuracy underscore the value
of adopting zero mean entropy in the development of advanced
speech recognition systems.

VI. CONCLUSIONS

This study proposed the use of entropy based features for
the application of dysarthric severity classification employing
two widely used dysarthric speech corpra: UA-Speech and
TORGO. Spectrographic analysis of speech data from individ-
uals with varying degrees of dysarthria reveals distinct entropy
patterns associated with each severity level. These patterns
help in identifying specific speech alterations that occur as the
disorder progresses. For instance, individuals with more severe
dysarthria often exhibit higher entropy values due to greater
variability in their speech signals. This analysis is supported
by several experiments.

Experimental results support the effectiveness of incorpo-
rating zero mean entropy into the feature extraction process
for classification. These results show that adding entropy
information significantly boosts the accuracy of these systems,
enabling them to better differentiate between different levels
of dysarthria. Furthermore, this work can be extended by
inclusion of entropy based information extracted using various
filterbanks like linear and mel in the state-of-the-art deep
learning models like whisper, wav2vec 2.0 and analyzing the
noise robustness ability of entropy which helps us understand
the practicality of the proposed methodology.
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