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Abstract— The core concept of image deblurring is to establish a 

prior model and formulate the deblurring process as an 

optimization problem by using the statistical properties of 

gradients and noise. In usual, a user-defined parameter is 

introduced to control the trade-off between the sharpness of the 

deblurring result and the robustness to noise. However, using a 

single variable is difficult to make the deblurring algorithm adapt 

to different types of images. In this work, we aim to overcome this 

limitation. The criteria to determine different regions can be 

obtained through noise estimating and construct a space-variant 

noise model. Utilizing different statistical characteristics of noise, 

we can approximate their distribution using various hyper-

Laplacian models. Thus, we establish two lookup mechanisms. 

The final result interpolates the result of different regions to 

obtain a smoother outcome. Additionally, for the significantly 

degraded image with a low sign-to-noise ratio (SNR), we apply an 

adaptive denoiser in the frequency domain to stabilize the 

deblurred image. 

 

I. INTRODUCTION 

  Image deblurring has been a thoroughly studied topic for the 

past several decades. Here, we focus on a specific type of 

distortion: motion blur [1,2,3] combined with additive white 

Gaussian noise (AWGN) [4]. This type of distortion is 

commonly observed in handheld photography, where the 

camera and the subject experience relative movement during 

the exposure time. The presence of AWGN, on the other hand, 

mainly stems from the sensor while reading discrete data, 

making the restoration process more challenging. In our study, 

we aim to address the challenges posed by motion blur and 

AWGN.  

  To begin with, the process of image blurring can be 

formulated as follows: 

 𝐲 ൌ 𝐱 ⨂ 𝐤 ൅ 𝐧,    𝐧 ~𝒩ሺ0, 𝜎ଶሻ   

where 𝐱 denotes sharp image, 𝐤 is the point spread function 

(PSF), also known as the bur kernel, 𝐲  is the image after 

motion blurring, 𝐧  is the additive white Gaussian noise 

(AWGN) with standard deviation 𝜎 , and the notation ⨂ 

indicates 2D convolution in spatial domain. All kinds of 

uniform motion blurring can be simply modeled by (1). The 

goal is to reconstruct latent image 𝐱 based on the blurry input 

𝐲 and 𝐤.  

 

II. RELATED WORKS 

Non-blind deblurring algorithms can be roughly categorized 

into conventional methods and deep learning-based methods. 

Conventional methods, such as the Wiener filter, are derived 

based on minimum mean square error (MMSE), while 

conjugate methods are derived based on least squares error 

(LSE). Recently, the most popular framework is maximum a 

posteriori (MAP), which, through Bayes' theorem, maximizes 

the posterior probability Pሺ𝐱|𝐲, 𝐤ሻ by maximizing the product 

of the likelihood Pሺ𝐲|𝐱, 𝐤ሻ  and the image prior Pሺ𝐱ሻ . A 

classic non-deep learning method utilizes a hyper-Laplacian 

function as the image prior [5], aiming to solve the following 

objective function  

 min
𝐱

∑ ቀ
ఒ

ଶ
ሺ𝐱 ⨂ 𝐤 െ 𝐲ሻ௜

ଶ ൅ ∑ ቚ൫𝐱 ⨂ 𝑓௝൯
௜
ቚ

ఈ

௝ୀ௛,௪ ቁே
௜ୀଵ    

where 𝑁 denotes the total number of pixels in the image, and 

𝑓௛ and 𝑓௪ represent the vertical and horizontal gradient filters, 

respectively. The work suggests that the deblurring problem 

can be well modeled by the summation of a likelihood term and 

a hyper-Laplacian distribution prior 𝑒ି|𝐱 ⨂ ௙|ഀ
with two 

adjustable parameters, 𝛼 and 𝜆.  

To solve (2), half quadratic splitting (HQS) is introduced 

to separate the objective function into two sub-problems: 

deconvolution and image regularization. In the deconvolution 

phase, the latent image is obtained by direct FFT, while the 

image regularization phase is achieved through an analytic 

solution. The restored image is obtained by iteratively solving 

these two sub-problems.  

 



 

 

Fig. 1. Deconvolution results from different 𝜆 fixing 𝛼. 

 

Fig. 2. Deconvolution results from different 𝛼 fixing 𝜆. 

 

Other non-DL methods follow a similar solving architecture. 

For example, BM3D-based deblurring [6, 7] utilizes the 

synthesis features of the BM3D framework, while outlier 

handling [8] removes saturated pixels during the deblurring 

process. With the advent of deep learning, methods have shifted. 

Instead of using the Hyper-Laplacian prior as in [7], the FCN 

method [12] suggests learning the image prior using a fully 

convolutional network. The IRCNN method [13], on the other 

hand, frames the image regularization problem as a denoising 

problem, solving it with a residual network. These methods are 

based on single optimization problems; however, image 

restoration should be adaptive to different images and various 

regions within a single image. Consequently, more complex 

models have been proposed. For instance, the NBDN [9] trains 

three separate models for restoration degree, image 

regularization, and a mask determining the probability of 

saturation. In INFWIND [10], deblurring is no longer treated as 

a single optimization problem; instead, it integrates Wiener 

filter deconvolution with image preprocessing and 

postprocessing.  

 

III. MOTIVATION 

For non-DL methods, a single optimization problem 

restricts the degree of restoration in different regions of an 

image. As for the DL based methods, we find that for low SNR 

images, the learned priors are either ineffective or require the 

noise standard deviation to be known. Hence, blind denoising 

plays a crucial role in low SNR images deblurring. Our work is 

highly related to [5]. We first make a few observations about 

the hyper-Laplacian prior. In (2), the restoration depends on 

two parameters: 𝜆 and 𝛼 . 𝜆 controls the sharpness of the 

deconvolution result. A greater 𝜆 will make the image prior 

term subtler, resulting in a sharper yet noisier image. 

Additionally, 𝛼 controls the curvature of the image prior 

and also affects the outcomes. A greater 𝛼 indicates a more 

gradual decline in the gradient model, which corresponds to a 

sharper deconvolution. 

We aim to replace the single hyper-Laplacian model with more 

accurate regularization terms according to local variance. The 

following section illustrates how we construct a spatially 

adaptive model, address the ringing effect, and provide the 

complete algorithm at the end. 

 

IV. PROPOSED METHOD 

A. Spatial Adaptive Probabilistic Model 

In [5], the gradient is simply the difference between two 

horizontally and vertically adjacent pixels, i.e., 𝑓௛ ൌ ሾ1 െ
1ሿ, 𝑓௪ ൌ ሾ1 െ 1ሿ். Here, we use the Roberts cross filter [15] to 

calculate the gradient because the Roberts cross filter 

maximizes the KL divergence [14] of the gradient distribution 

between sharp images and blurry ones among conventional 

edge filters. Therefore, the filter in [5] is replaced by  

 𝑓௛ ൌ ቂ1 0
0 െ1

ቃ , 𝑓௪ ൌ ቂ 0 1
െ1 0

ቃ.  

Generally speaking, when choosing 𝜆 , we consider two 

factors: the SNR of the blurry image and the local variance. For 

low SNR images, we want a smaller 𝜆  to increase the 

proportion of the image prior term. This supports the idea that 

the image prior term acts as a denoiser. In other words, 

denoising is more important than deblurring for low SNR 

images. On the other hand, local variance also determines the 

degree of restoration. For image patches with low variance, we 

can assume that the patch is almost constant. In these smooth 

patches, we apply strong regularization, forcing the gradients 

to be close to zero. We establish a 2D lookup table that uses 

noise standard deviation 𝜎௡  and local variance 𝑣௜  to 

determine the desired 𝜆. We use a rule of thumb to find the 

relationship between 𝜎௡, 𝑣௜, and optimal𝜆௢. The experimental 

data consists of 80 undistorted real-world images. Each image 

is randomly blurred by one of the kernels in Levin [16] and 

AWGN with 𝜎௡. We then deblur the blurry images using five 

different 𝜆 values: 0, 4, 200, 1000, and 10000. Note that when 

𝜆 ൌ 0, it means that only denoising is performed. Next, we 

calculate the local variance of the original image using a 9 ൈ 9 

block. For each patch 𝐏௜  with variance 𝑣௜ , we compare 𝐏௜ 

with the patch in the same location in the five previously 

generated results using PSNR. By choosing the patch with the 

highest PSNR, we can find 𝜆௢
௜  under 𝜎௡ and 𝑣௜. 

Then, we partition the variance into 16 intervals with the 

following boundaries: 0, 1, 4, 8, 16, 30, 53, 88, 142, 212, 312, 

449, 650, 961, 1467, and infinity. In each interval, there are 

several pairs of patches 𝐏௜s with 𝑣௜ falling within this range. 

For the parameters 𝜆௢
௜ s corresponding to these patches, we 

count the most frequent 𝜆௢
௜  in this section and set it as the 

optimal lambda 𝜆௢  for the current variance section. To this 

end, we create a 1-D lookup table from local variance 𝑣௜  to 

optimal 𝜆௢ under AWGN with noise standard deviation 𝜎௡.  



 

 

Fig. 3. Proposed 2D lookup table.  

 
By repeating the above procedure for four different noise 

standard deviation, where 𝜎௡ ൌ 1, 4, 7, and 10, we obtain a 

scatter plot of 𝜆௢ versus 𝜎௡ and 𝑣௜, i.e., the blue dots in Fig. 

3. Based on the experiment result, we use the following formula 

to model the scatter points 

 𝜆ு௜௚௛௏௔௥ ൌ
ଵ଴଴଴଴

ଵା௘

ష೟

ට഑೙
ఱ

,      𝑡 ൌ 𝑣௜ െ ሺ6.32 ∙ 𝜎௡
ଶሻ, 

𝜆௢ ൌ max൫𝜆ு௜௚௛௏௔௥ሺ1 െ 𝐶ሻ, 0൯, 𝐶 ൌ max ቀ
ఙ೙

మିሺ௩೔ିଵሻ

ఙ೙
మ , 0ቁ. 

We use a sigmoid function for the high-variance intervals. The 

parameter 𝐶 regulates the low-variance sections, ensuring that 

𝜆௢ remains close to zero regardless of 𝜎௡
ଶ. Additionally, when 

𝑣௜  is less than 1, 𝜆௢  is set to 0, indicating that no 

deconvolution is needed. The 2D lookup table generated using 

(3) and (4) is shown in Fig. 3. by the red line. 

So far, we have proposed a complete 2D lookup table for 𝜆௢. 

To further improve the accuracy of our model, we adjust the 

hyper-Laplacian model [5] for different variance sections. We 

reintroduce the parameter 𝑏, which was neglected in [5], to 

achieve a more flexible model. Consequently, the objective 

function in (2) is rewritten as 

 min
𝐱
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ఒ
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We sampled a total of 10,120 patches and classified them into 

the variance intervals mentioned above. For each variance 

section, we gather all the patches and used a pair of ሺ𝛼, 𝑏ሻ to 

approximate the gradient distribution. Taking the local variance 

interval [312, 449] as an example, the optimal hyper-Laplacian 

prior is 𝛼 ൌ 0.9 and 𝑏 ൌ 11.9. 

 

B. Ringing Effect Suppression 

 

 
Fig. 4. Histogram of the gradient of loval variance between 312 and 449. 

 

Fig. 5. Resulting image 𝐈 from [5] that exhibits ringing effect. 

 

Fig. 6. Lleft) Original image patch; (Right) After ringing effect removal. 

 

An effective ringing effect method is to apply local 

subvoxel-shifts [17]. For every patch in the image, alternative 

sampling that minimizes the difference between adjacent pixels 

is applied. However, this method may have the problem of high 

computational complexity. Here, we propose an effective way 

of removing the ringing effect during the deconvolution phase. 

Take the above image 𝐈 for example, the black wires and 

electric tower against a bright background introduce sharp 

color transitions, which are therefore distorted by the ringing 

effect. However, we can observe that although the ripples are 

prominent, the gradients of these ripples are very close to zero. 

Utilizing this feature, we first calculate the gradient map of the 

entire image. For gradient values below a specific threshold (3 

in our implementation), we smooth the ringing-distorted image 

across three scales: 100, 50, and 25. At the first scale of 100, 

we search for any 100 × 100 area where all gradients are zero. 

If such an area exists, we apply smoothing to the corresponding 

area in 𝐈. This procedure is then repeated for scales of 50 and 

25. Next, we perform regional smoothing problem by solving 

the least-squares approximation using orthogonal projection 

matrices. Taking the scale of 100 as an example, for the top-left 

pixel in ringing patch, denoted as 𝑝ଵ, its 𝑥-index 𝑥ଵ and 𝑦-

index 𝑦ଵ are set to 1. As we move from left to right, the 𝑥-

index increases to 100, and as we move from top to bottom, the 

𝑦-index also increases to 100. This approach provides a total of 

10,000 3D data points, i.e., [𝑝୧, 𝑥୧, 𝑦୧]. In other words, we aim 

to minimize 

 ‖𝐩 െ ሺ𝑎ଶ𝐯ଶ ൅ 𝑎ଵ𝐯ଵ ൅ 𝑎଴𝐯଴ሻ‖ଶ.  



 

 

Fig. 7. Flowchart of the adaptive blind denoising algorithm 

 

where 𝐩,  𝐯ଶ and 𝐯ଵ corresponds to the vectorization of 𝑃୰, 𝑥-

index and 𝑦-index, i.e., 

 𝐩 ൌ ቎

𝑝ଵ
𝑝ଶ
⋮

𝑝ଵ଴ర

቏ , 𝐯ଶ ൌ ቎

𝑦ଵ
𝑦ଶ
⋮

𝑦ଵ଴ర

቏ , 𝐯ଵ ൌ ቎

𝑥ଵ
𝑥ଶ
⋮

𝑥ଵ଴ర

቏ , 𝐯଴ ൌ ቎

1
1
⋮
1

቏.  

Next, we concatenate 𝐯଴, 𝐯ଵ, 𝐯ଶ to form a matrix C=[𝐯଴, 𝐯ଵ, 𝐯ଶ]. 

Following the orthogonal projection theorem, the coefficients 

of the estimated plane are given by  

 ൥ 
𝑎଴
𝑎ଵ
𝑎ଶ

 ൩ ൌ ሺ𝑪்𝑪ሻିଵ𝑪்𝐩,  

 𝑃ୱ୫୭୭୲୦ ൌ 𝑎ଶ ൥
1 ⋯ 1
⋮ ⋱ ⋮

100 ⋯ 100
൩ ൅ 𝑎ଵ ൥

1 ⋯ 100
⋮ ⋱ ⋮
1 ⋯ 100

൩ ൅ 𝑎଴. 

  

C. Blind Denoising 

Since denoising becomes crucial in deblurring low SNR 

images, we propose a blind denoising method that can restore 

images degraded by frequency-varying noise. The overall 

flowchart of the algorithm is shown here without delving into 

details.  

The proposed method first estimates the noise spectrum, then 

performs local denoising using an adaptive Wiener filter. Our 

method can denoise a 512x512 grayscale image in under 0.5 

seconds regardless of noise level, making it robust for 

deblurring, especially in low SNR images.  

 

D. Schematic of Implementation  

Finally, we provide a complete framework of the proposed 

non-blind deblurring algorithm along with a few 

implementation details. The variance map 𝑋௣௥௘ of the blurry 

image is calculated by the image with initial denoising and 

deblurring. We found that the correlation of variances between 

the blurry image and the sharp image is only 0.6. However, 

after performing denoising and deblurring, the correlation 

between the resulting image and the latent image can reach 0.9. 
Additionally, the output at each variance level is interpolated 

by a sigmoid-like function to prevent the image from having 

discontinuous transitions. 

 𝑅 ൌ 1/ሺ1 ൅ exp ሺെ
ଶସሺ௩ି

ೡ೔శభశೡ೔
మ

ሻ

௩೔శభି௩೔
ሻሻ  

 

Fig. 8. (Left) Deblurred result without denosing; (Right) Apply denoising. 

 

 

Fig. 9. Overall architecture of proposed non-blind deblurring algorithm. 

 
Fig. 10. proposed non-blind deblurring algorithm 

 
Also, we perform denoising and ringing effect removal only 

at levels where the variance is less than the noise standard 

deviation to avoid losing image details. In other words, if the 

image is not degraded by noise, we won't apply any denoising. 

Conversely, if the AWGN has a standard deviation greater than 

8, we perform denoising at all levels. The complete process is 

outlined as in Fig. 10. 

 

V. EXPERIMENTS 

We examine our work by comparing the deblurring 

performance of motion blur with other methods under three 

different noise standard deviation. The test dataset comprises a 

total of five distinct image categories: text images, animal 

images [19, 20], night-time images [21], face images [18], and 

food images.  



 

TABLE I.  DEBLURRING PERFORMANCE UNDER 𝜎𝑛= 2 

 

TABLE II.  DEBLURRING PERFORMANCE UNDER 𝜎𝑛= 5 

 

TABLE III.  DEBLURRING PERFORMANCE UNDER 𝜎𝑛= 10 

 

 

We use the peak signal-to-noise ratio (PSNR) as our 

evaluation metric. For a sharp image 𝐲ሾ𝑚, 𝑛ሿ and deblurred 

image  𝐱ሾ𝑚, 𝑛ሿ, the metrics is evaluated as follows: 

      PSNR ൌ 10 logଵ଴
ଶହହమ

భ
ಾಿ

∑ ∑ |𝐲ሾ௠,௡ሿି𝐱ሾ௠,௡ሿ|మಿ
೙సభ

ಾ
೘సభ

.   (12) 

From Tables I, II, and III, our method consistently achieves the 

best average performance among state-of-the-art techniques 

across three different scenarios.  

 

 
Fig. 11. Effect of ringing artifact removal. 

 
Fig. 12. Comparison of the details of the deblurring outputs. 

 

Fig. 13. Comparison of the details of the deblurring outputs.   

 

Fig. 14. Comparison of the detail of deblurring outputs. 

 
At the first noise level (𝜎௡ ൌ 2), the results from these 

methods are similar. However, upon closer examination of 

image details, our method, which includes ringing effect 

removal, effectively eliminates the ripple on the roof that the 

DMSP does not address. Additionally, compared to the 

INFWIDE, our method better preserves texture details, such as 

the carvings on the wall. 

At the second noise level, where AWGN begins to influence 

the results, shows that our method preserves tire tracks while 

also performing denoising. In contrast, the INFWIDE is more 

likely to sacrifice details for a more stable scene structure, and 

the NBDN does not specifically address denoising. 

PSNR
Blackboard

(text)
Fox

(Animal)
Boat

(Night)
Man

(Face)
Beefnoodle

(Food)
Average

BM3D [6, 7] 31.3842 23.8940 21.9942 17.2226 20.0036 22.8997

Fast [5] 26.1323 34.0253 33.1821 30.1901 31.7080 31.0476

DMSP [11] 20.9645 28.7640 29.1063 25.4472 25.4122 25.9388

FCN [12] 27.1441 30.9976 30.8542 29.4330 29.6862 29.6230

IRCNN [13] 29.3836 33.0348 32.4839 29.7949 32.1332 31.3661

NBDN [9] 30.6898 34.6576 32.4464 29.7519 24.5466 30.4185

INFWIDE [10] 28.4646 34.0638 25.8255 28.3207 26.3456 28.6040

Proposed 30.8523 34.9007 34.1105 31.7858 33.5533 33.0405

PSNR
Blackboard

(text)
Fox

(Animal)
Boat

(Night)
Man

(Face)
Beefnoodle

(Food)
Average

BM3D [6, 7] 26.9748 27.9798 25.4035 20.9018 24.0873 25.0694

Fast [5] 25.3035 29.1439 28.5934 27.2970 28.0058 27.6687

DMSP [11] 20.8497 28.4093 28.7898 25.2838 25.3031 25.7271

FCN [12] 21.1616 26.8437 27.8374 24.5312 24.2157 24.9179

IRCNN [13] 27.0281 26.8644 25.9539 25.2703 25.7853 26.1804

NBDN [9] 27.5403 29.0457 27.1494 23.6711 19.5285 25.3870

INFWIDE [10] 27.2039 32.1745 27.4825 27.4527 26.1158 28.0859

Proposed 26.2209 32.2095 32.1896 29.2618 31.2045 30.2173

PSNR
Blackboard

(text)
Fox

(Animal)
Boat

(Night)
Man

(Face)
Beefnoodle

(Food)
Average

BM3D [6, 7] 23.8607 30.1757 27.9975 24.1482 26.5962 26.5557

Fast [5] 23.3875 24.1167 23.4251 23.0462 23.3501 23.4651

DMSP [11] 20.9026 29.1435 29.5945 26.0530 25.9833 26.3354

FCN [12] 21.2007 26.0540 27.3009 24.0345 23.6572 24.4495

IRCNN [13] 20.3963 16.9625 15.2924 15.9559 16.0320 16.9278

NBDN [9] 23.8940 21.7628 15.4941 18.1882 18.7295 19.6137

INFWIDE [10] 25.8669 27.3311 28.3032 25.9292 24.1002 26.3061

Proposed 25.4815 29.0070 29.7646 27.5719 29.4297 28.2509



 

In high-noise situations ( 𝜎௡ ൌ 10 ), from Table III, the 

streetlight shows that our method tends to produce sharper 

edges, while the INFWIDE trades sharpness for overall image 

stability.  

Moreover, in Figs. 11-14, the details of the deblurring 

outputs of the proposed method and other methods are 

compared. One can see that the deblurring outputs of the 

proposed method are much closer to the ground truths than 

those of other methods. With the proposed methods, the edges 

and texture of the object can be effectively reconstructed. 

Meanwhile, the proposed method can well avoid the ringing 

effect and the noise effect. 

      

VI. CONCLUSION 

In summary, we established a lookup table based on 

experimental data to map local variance to the hyper-Laplacian 

model and determine the optimal degree of deblurring. For low 

SNR images, we developed an efficient denoising method that 

handles noise varying in both space and frequency domains. By 

comparing our approach with state-of-the-art non-blind 

deblurring techniques, we demonstrate that our algorithm gives 

consistent performance across various types of degradation.   
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