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Abstract—Speech Emotion Recognition (SER) is critical in
human-computer interaction (HCI). Previous SER works often
utilize Automatic Speech Recognition (ASR) systems to improve
SER performance. Some studies have investigated the possibility
of modeling multi-task ASR and SER. However, prior studies and
our preliminary experiments show the conflicts between ASR and
SER if standard multi-task learning is used. We adopt a two-stage
and weighted training strategy to overcome the conflicts between
SER and ASR tasks. We utilize the public Whisper model that
supports ASR tasks and others and add a small light adapter on
the Whisper for the SER task, Whisper-SER. We first fine-tune
the model on the ASR task and then fine-tune the model using
the weighted loss, controlling loss between the ASR and multi-
label SER task during training. The proposed method allows the
Whisper-SER to recognize emotions and transcribe without ASR
and SER performance degradation within the same encoder and
decoder.

I. INTRODUCTION

Speech is the most common modality for daily human interaction,
and emotional signals in speech can improve communication. More
and more devices support speech-based requests for users to ask
machines to achieve tasks. For instance, people can use Amazon
Alexa to make restaurant reservations and leave messages to friends.
Detecting emotions from human speech can improve HCI and user
experiences. Take the same example; the machine can add suitable
“emojis” by recognizing emotions from user requests when sending
messages to others for users. Therefore, machines need the ability to
know the content and emotions of speech. However, ASR and SER
tasks are not easy to integrate into one system, and two tasks are in
conflict, degrading performance for both tasks [1].

Additionally, humans use the semantic and acoustics to express
their emotions and intentions in speech. Therefore, many prior studies
[2]–[4] improve performances of the SER systems by integrating
linguistic and acoustic information, leading to better recognition of
emotions than only considering acoustic information. The common
practice is to deploy a pre-trained ASR system to generate transcripts
and use a pre-trained language model, such as BERT, to extract lin-
guistic embeddings as inputs for further improved SER performance
[5]–[7]. However, prior studies only focus on SER tasks, and very
few works jointly train a “shared-parameter” model for SER and
ASR tasks due to the well-known catastrophic forgetting issues, which
means the deep neural networks forget the original tasks when fine-
tuning the models for new tasks. Therefore, we aim to avoid the
catastrophic forgetting issue by the proposed method to make the
pre-trained ASR model recognize emotions without ASR performance
degradation.

The recent rapid development of large foundation speech process-
ing systems produces an excellent opportunity to unify SER and

ASR tasks into one shared-layer model. One of the state-of-the-
art (SOTA) ASR systems, the Whisper [8], trained with 680,000
hours of weakly-supervised audio data, can handle four tasks: speech
recognition, speech translation, voice activity detection, and language
identification tasks. However, this model can not perform SER tasks.
While some previous studies have proposed models for multi-task
SER and ASR [6], [9], [10], they define the SER task as a single-label
task, allowing each utterance only to have one emotion. Nevertheless,
emotion perception can co-occur with emotions, [11]–[13]. Therefore,
we follow the emerging perspective to define SER as a multi-label
classification task to reflect the realist world. We aim to jointly adopt
a Whisper model to validate the proposed method for SER and ASR
tasks in one unified architecture. To the best of our knowledge, we
are the first paper to integrate multi-label SER and ASR in the share-
layer model.

In conclusion, we developed a model that is based on the Whisper
model and added the lightweight component for multi-label SER
tasks. Different from the recent SER studies that utilize speech
Self-Supervised Learning (SSL) models as encoders [1], [14]–[16]
and fine-tune them for SER tasks, we investigate whether extracting
embeddings from both encoder and decoder of Whisper can benefit
the performance of SER task. The two main contributions of this
work are as follows:

• We comprehensively study a SOTA ASR model’s word error rate
(WER) on emotion-rich corpora and investigate the relationship
between ASR and SER performances, considering inter-rater
agreement, speaking rate, duration, and emotion category.

• We are the first work to model ASR and multi-label SER
tasks with one unified weakly supervised system that enables
parameter sharing between these two tasks for both encoders and
decoders with the adapted two-stage training strategy, mitigating
cartographic forgetting issues.

II. BACKGROUND AND RELATED WORK

A. SER Systems Using Pre-trained ASR Models

Linguistic information plays an essential role in understanding
emotions in speech. Many prior studies integrated semantics from
human-annotated transcripts or predicted ones by ASR systems. For
instance, Yoon et al. [17] applied the pre-trained ASR system to
extract linguistic information to obtain better performances of the
SER systems than only using acoustic information for training SER
systems. Also, recent papers utilize hidden states from the audio
encoder of an ASR system [8] to strengthen the performances of
the SER systems [7], [18], [19]. However, the above-mentioned prior
literature only optimized for a single SER task and does not jointly
optimize ASR and SER tasks. Besides, our preliminary study revealed



that the Whipser Large V3 1 has a WER of 12.7% on the v1.11 of the
MSP-PODCAST, which is higher than most of the ASR benchmark
databases, WER 7.7% on the “Open ASR Leaderboard” 2 [20].
Moreover, Li et al. [9] reported the same finding on the well-known
emotion corpus, IEMOCAP [21]. Therefore, this work plans to deeply
analysis the potential reasons why one of the SOTA ASR systems
performs worse on emotional speech than more neutral utterances
by considering the inter-agreement between raters, speaking rate,
categorical emotions, and duration lengths.

B. Multi-task SER and ASR Systems
For most practical applications, speech-based devices must auto-

matically transcribe speech requests to understand users’ intentions,
actions, or item information. Therefore, many previous studies have
combined SER and ASR tasks in the systems. the studies [22], [23]
apply supervised fine tuning on a pre-trained SSL system for ASR
and SER tasks. However, some research [10], [24] repeatedly reveals
that emotional speech is challenging for ASR systems, leading to
higher error rates. Also, Gao et al. [10] showed that ASR and SER
tasks often conflict with each other when using common multi-task
learning. To overcome this problem, Feng et al. [24] proposed an
SER model integrated with an acoustic-to-word ASR model. Gao
et al. [10] utilized a two-stage fine-tuning method to separately fine-
tune two components of models for SER and ASR tasks, respectively.
Nevertheless, the study [10] still split the SER and ASR tasks using
two individual layers, which means the encoder part is not shared,
but we use the shared encoder and decoder parts in the work.

To make the model more efficient, we aim to make one share-
layer model for ASR and SER tasks, so we adopt a two-stage training
approach [10] with the weighting loss to jointly optimize ASR and
SER tasks without compromising either task. Besides, all the above-
mentioned studies regard the SER task as a single-label task, only
assigning one emotion for each utterance. They used the majority
rule or plurality rule to obtain a consensus label, but they directly
excluded the data sample without a consensus label and ignored a
minority of emotional ratings, making the test easier to predict. This
work defines SER as a multi-label classification task (section II-C) to
reflect a realistic scenario using the complete test without discarding
any ambiguous data samples, suggested by [13].

C. Disagreement Among Raters and Multi-label SER
Disagreement among raters is often in the public emotion databases

[25]. However, most previous studies regard the disagreement as
noise and define SER as a single-label task using majority or
plurality aggregation rules [3], [26] to obtain a single consensus label.
However, the SER task differs from other speech tasks, like ASR or
part-of-speech tagging, as it is a genuinely and naturally subjective
task, so majority/plurality aggregation rules are unsuitable for SER
task [13]. The disagreement is not necessarily to be removed, and
the non-consensus samples represent real-world emotion perception.
Also, conveyed and perceived emotions are not always discrete, as
founded by the psychological studies [11], [12], [27]. In other words,
there is a co-occurrence of emotions in one speech. Therefore, to
make the SER systems recognize co-occurring emotions, we use
the all-inclusive label aggregation rule proposed by [13] to calculate
distributional labels as ground truth, and we define SER tasks as
multi-label emotion recognition.

III. METHODOLOGY

Prior studies observed conflicts between ASR and SER tasks [10],
[24], [28], and we also found that direct joint training for ASR and
SER can degrade the performance of both tasks. Therefore, we are
curious about the feasibility of a one-shared multitask system for

1https://huggingface.co/openai/whisper-large-v3
2https://huggingface.co/spaces/hf-audio/open asr leaderboard

ASR and SER based on the Whisper architecture [8]. We introduce an
SER and ASR multitask framework, named Whisper-SER, as shown
in Fig. 1, by supervised fine-tuning the SOTA ASR models with a
two-stage weighting method to minimize ASR and SER performance
degradation. To the best of our knowledge, we are the first work to
reveal ASR performances on an emotional dataset with the complete
tests, allowing samples to have co-occurrence of emotions.

A. Distributional-Label Processing for SER
We follow the studies [13] to calculate the distributional labels for

training SER systems. For instance, given an emotional audio for four-
class emotion recognition (neutral (N), angry (A), sad (S), and happy
(H)), the votes are {N, N, A, S, S}. The distributional label can be
calculated by the number of votes divided by the total votes for each
emotion. In the example, we get a distributional label {N, A, S, H} =
{2/5, 1/5, 2/5, 0/5} = {0.4, 0.2, 0.4, 0.0}. Fig. 2 shows the detailed
distribution across different data sets. For conventional SER studies,
datasets with mixed emotions are removed for simplicity; however,
we kept all the data to reveal the model’s actual SER performances,
as suggested by [13], [29]. During the evaluation of systems, the
threshold, 1/C, is used to convert the distributional predictions into
hard decisions. The C means the number of emotion classes. We
use one example in Table I to clearly describe the ad-hoc process.
Therefore, with the sample example, we assign the data sample has
co-occurring emotions, neutral and sadness.

B. Objective Functions
We employ the cross-entropy loss as an objective function for ASR

and SER tasks.
1) Cross-entropy Loss for ASR: In this work, we choose the

Whisper model [8] as a backbone model, an encoder-decoder-based
ASR model by sequence-to-sequence leanings. The decoder of the
Whisper generates the IDs of each token in the input utterances, and
the Whisper tokens can transform the ground truth transcripts into
IDs. With the ID vectors of the ground truth and predictions, we can
calculate the cross-entropy loss denoted by LASR to update the whole
model.

2) Cross-entropy Loss for SER Task: Chou et al. [13] reported
that soft-label learning using cross-entropy loss is the best approach to
obtain higher recognition of SER systems among hard-label learning
with the cross-entropy loss, soft-label learning with the cross-entropy
loss, and distributional-label learning with the Kullback–Leibler Di-
vergence (KLD) loss. Therefore, we follow the study to use soft-label
learning using cross-entropy loss, denoted by LSER, to train the model
for the SER task.

3) Standard Multitask Learning for ASR and SER Tasks:
The objective function in the standard multitask learning (MTL)
becomes

LMTL = LSER + LASR. (1)

C. Two Stage Training Method with the Weighting Loss
We aim to enable the Whisper to recognize emotions from speech

and keep the same ASR performances. We have two training stages to

TABLE I
OVERVIEW OF ONE SAMPLE FOR 4-CLASS EMOTION RECOGNITION. THE

A, S, AND N, ARE ANGER, SADNESS, AND NEUTRAL EMOTIONS,
RESPECTIVELY. THE NUMBER MEANS THE COUNT OF EMOTIONS. FOR

INSTANCE, A*1, S*2, AND N*2 MEANS A, S, S, N, N

Raw Annotation A*1, S*2, N*2

Label for Training Stage {N, A, S, H} {0.4, 0.2, 0.4, 0.0}
Label for Testing Stage {N, A, S, H} {1, 0, 1, 0}
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Fig. 1. The figure illustrates the overall structure of Whisper-SER. We added
the light models to the Whisper model (brown color) for the SER task, enabling
Whisper to do ASR and SER tasks using the proposed training method with
weighting loss.

achieve this goal. In the first training stage, we fine-tune the Whisper
model on the emotional dataset with the training and development
sets on the ASR task only. Then, in the second training stage, we use
the weighting loss to fine-tune the model for SER and ASR tasks. In
the weighting loss, we introduce an alpha to control weights between
LSER and LASR below, and the alpha value ranges from 0.1 to 0.9,
and the step size is 0.1. We also reveal the relationship between the
alpha and the ASR/SER performances by introducing the weighting
factor. Notice that the order of training tasks matters. The first stage
is to fine-tune the model for the ASR task and use the proposed
weighting loss for multitasking ASR and SER. It won’t work based
on our experiments if we inverse the tasks (train for the SER task
first, then the ASR task).

LW
MTL = α ∗ LASR + (1− α) ∗ LSER (2)

IV. EXPERIMENTAL SETTINGS

A. The MSP-PODCAST Corpus and Preprocessing
We validate the proposed method on version 1.11 of the MSP-

PODCAST emotion dataset [30]. This version has about 237 hours of
segmented audio recordings in English, containing 84,030 sentences
(134.34 hours) in the train set, 19,815 utterances (31.72 hours) in
the development set, 30,647 utterances in the test1 set, and 14,815
utterances in the test2 partition. Test2 set is overall more challenging

Fig. 2. Distributional-label distribution across different data sets. There are 8
emotions, including anger (A), sadness (S), happiness (H), surprise (U), fear
(F), disgust (D), contempt (C), and neutral (N).

than test1 and closer to real-life scenarios described in [30]. To the
best of our knowledge, we are the first ones to show the ASR and
SER performances on the Test2 set since the prior studies ignored
the Test2 set. The work uses the primary emotions where every rater
can only select one emotion from the given options, including anger
(A), sadness (S), happiness (H), surprise (U), fear (F), disgust (D),
contempt (C), neutral (N), and “other”. We exclude “other” to define
the SER task as 8-class multi-label emotion recognition. The corpus
also provides transcripts suitable for developing multitask ASR and
SER systems. We use the Whisper tokenizer Fig. 2 illustrates the
averaged distributional label across different data sets. to normalize
the transcripts and remove special comments, e.g., “[“00:30:33” Cross
Talk” or “[inaudible 00:08:44]”. More details about the corpus are in
[30].

B. Whisper-SER and Implementation Details

Fig. 1 illustrates the proposed Whisper-SER framework. We em-
ploy the Whisper model proposed by [8] (marked in dark blue
color in Fig. 1) as the primary backbone model since the Whisper
architecture is one of the SOTA ASR models. Whisper models have
sizes ranging from tiny (39M parameters) to large (1.5B parameters).
For computing efficiency, our experiments are based on Whisper Tiny.
Whisper Tiny has four transformer-based blocks on the encoder and
decoder, and the number of nodes for each layer is 384. We add a
module (marked in brown color in Fig. 1) for the SER task, including
one average pooling layer, one fully-connected layer with a ReLu
activation (the number of nodes is 384), and one prediction layer.
The inputs concatenate the hidden states of the last layers of the
encoder and decoder. In addition, to study if the encoder encodes
more emotion-related information than the decoder, we conduct
experiments to take the hidden states from the encoder’s last layer,
the decoder’s, or both.

There are two training stages for the Whisper-SER framework
introduced in section III-C. In the first stage, we fine-tune the pre-
trained Whisper architecture on the emotion dataset for ASR tasks by
setting α = 1 in equation (2). In the second stage, we introduce non-
zero α and jointly optimize the system with a convex combination
of ASR and SER losses (equation (2)). The maximum number of
generated tokens is 160. We use the Adam optimizer [31] with an
initial learning rate of 1e-7 and a batch size of 32 and a warm-
up decay learning rate scheduler with the maximum and minimum
learning, 1e-5 and 1e-7, respectively, for 5 epochs. We train the
models for 100 epochs with the DeepSeed stage 2 [32] and select
the best checkpoint with the lowest loss on the development set. We
use PyTorch and HuggingFace library . We conduct experiments on
an NVIDIA Tesla v100 GPU with 16 GB of memory. The total of
GPU hours is 100 for all results.

C. Evaluation Metric

For the ASR task, we use the Word-Error-Rate (WER) as the
evaluation metric, and the WER values can be calculated by WER =
(S + I +D)/N , where S, I, D, and N are a number of substitution,
insertion, deletion errors, and the number of words in the ground-truth
transcripts, respectively. In terms of multi-label emotion recognition,
the study [13] investigated the advantages and disadvantages of using
distribution-based assessment (e.g., KLD) versus hard-decision-based
assessment (e.g., F1 scores) on the SER task. Using distribution-
based assessment, it is hard to observe differences in performance
between the baseline and proposed model, which is not easy to
interpret since the scale is very small. Therefore, we decide to utilize
weighted-F1 (weF1), macro-F1 (maF1), and micro-F1 (miF1) scores
to measure multi-label classification accuracy. This involves selecting
target classes by applying thresholds to the ground truth data. A
prediction is deemed successful if the proportion for a class exceeds
1/8 mentioned in section III-A.
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TABLE II
ASR AND SER PERFORMANCE RESULTS OF THE MODELS. THE COLUMN EXPERIMENTS EXPLAINS THE EXPERIMENTS WE CONDUCT. THE COLUMN

INPUT INDICATES THE INPUT SOURCE OF THE SER MODELS MENTIONED IN SECTION IV-B. THE COLUMN FINE-TUNE INDICATES IF THE PRE-TRAINED
MODELS ARE FINE-TUNED. THE COLUMN #PARA. (M) INDICATES THE NUMBER OF MODEL PARAMETERS IN MILLIONS (M). ↑ SIGNALS THAT A METRIC IS

BETTER IF THE VALUE IS HIGHER. OTHERWISE, WE USE ↓.

Test Set Test1 Test2

Experiments Input Backbone Fine-Tune #Para. (M) WER (%)↓ MaF1↑ MiF1↑ WeF1↑ WER (%)↓ MaF1↑ MiF1↑ WeF1↑

SER SOTA [13] WavLM Large V 317 - 0.4850 0.6210 0.6060 - 0.4264 0.6127 0.5842
Whisper Large V3 [8] Large V3 1550 12.57 13.63

Whisper Tiny [8] Tiny 39 29.75 54.15

ASR Tiny V 39 20.26 19.98

SERDO Decoder Tiny V 39 769.2 0.4242 0.6183 0.5679 621.2 0.3591 0.5986 0.5303
SEREO Encoder Tiny V 39 1614 0.3691 0.5911 0.5216 1974 0.3338 0.5924 0.5126
SERBO Both Tiny V 39 348.6 0.4295 0.6191 0.5724 239.8 0.3624 0.5989 0.5332

MTLDO Decoder Tiny V 39 24.86 0.4209 0.6175 0.5646 22.68 0.3509 0.5998 0.5244
MTLEO Encoder Tiny V 39 23.80 0.3186 0.5843 0.4775 21.72 0.2858 0.5908 0.4750
MTLBO Both Tiny V 39 25.30 0.4239 0.6133 0.5642 22.57 0.3568 0.5936 0.5263

Whisper-SER Both Tiny V 39 20.90 0.4111 0.6172 0.5611 19.72 0.3563 0.6009 0.5295

D. Experiments
1) Single-task Baseline: We fine-tune the Whisper Tiny model

on the MSP-PODCAST as the ASR baseline using LASR, denoted by
ASR. In terms of SER, we add light models, including the temporal
average pooling layer, Fully-Connected (FC) layer, and prediction
layers. To investigate whether the encoder block has more emotional
information than the decoder one, we conduct the experiences to
extract the embeddings from the last layer of the encoder block
(denoted by EO), decoder block (denoted by DO), or both blocks
(denoted by BO). In fact, we fine-tune the Whisper Tiny model on the
MSP-PODCAST for the SER task using LSER as the SER baseline,
denoted by SER. For instance, the SERBO means the input of the
light models for the SER task comes from both of the last layers of
encoder and decoder blocks.

2) Multi-task Baseline: To show the conflicts between SER and
ASR tasks, we conduct experiments to show the performances using
standard loss, LMTL, denoted by MTL. We also changed the source
of inputs for the light model for the SER task to determine which
blocks encode more emotional cues (e.g., MTLBO).

3) SER and ASR SOTA Models: To understand the gap between
the SOTA and the proposed method, we employ pre-trained Whisper
Large V3 model3 as the ASR SOTA model, denoted by Whisper
Large V3. In terms of SER SOTA, we use the model4 proposed
by [15], and we fine-tune the model on the MSP-PODCAST using
the distributional labels by following the study [13]. We denoted the
model by SER SOTA. The more details about model structure and
training approaches are in [15] and [13].

4) Finding the Best α Value in LW
MTL: To find the best α value

in LW
MTL (Equation 2), we conducted the experiments by assigning

the α value as from 0.1 to 0.9, as shown in Fig. 3. The 0.8 is the
best α value in the work. Besides, when the α is 0.1 or 0.2, the
performances for the SER task is higher than the model SERBO , and
the finding aligns with the previous studies [1], [9].

5) Whisper-SER: Based on the preliminary experiments, we
found that using embeddings from both of encoder and decoder blocks
(SERBO) has better recognition performance. Therefore, the proposed
Whisper-SER uses this same structure. In the first stage, we only
fine-tune the Whisper components where in the dotted line in Fig. 1
for the ASR task. Then, in the second stage, we fine-tune the whole

3https://huggingface.co/openai/whisper-large-v3
4https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-

msp-dim

Whisper-SER model using the LW
MTL loss. To find the best α value in

Equation 2. We conducted the experiments by assigning the α value
as from 0.1 to 0.9, as shown in Fig. 3. The 0.8 is the best α value
in the work.

V. RESULTS AND ANALYSIS

Table II summarizes all results on the MSP-PODCAST in various
F1 scores across two different test sets. We answer the research
questions one by one in detail below.

Does the encoder block of the Whisper have more emotion-
related cues? To our surprise, the SERDO and SERBO models have
better performance than the SEREO , which might imply that the
decoder encodes more emotion-related information than the encoder,
which has never been investigated in the previous. We are the first
work to report this finding, suggesting we should consider a decoder
as well.

Are there conflicts between SER and ASR tasks? We find that
the joint training with ASR and SER using vanilla multi-task loss,
LMTL, degrades ASR and SER task performance. For instance, the
model, ASR, has 20.26% WER and SERBO has 42.95% in macro-
F1 score on the Test1. However, the MTLBO has 25.30% WER
and 42.39% macro-F1 score ASR and SER tasks, respectively. All
performances decreased.

Why should we use two stages to train the models for SER
and ASR tasks? The results of MTLDO , MTLEO , and MTLBO
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(b) Test2 Set

Fig. 3. Relationship between ASR/SER performances and α values in LW
MTL

(Equation 2). We mark the point in red to show the best α considering both
ASR and SER performances.
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TABLE III
OVERVIEW OF ASR AND SER PERFORMANCES WITH THE THREE FACTORS (INTER-RATER AGREEMENT, SPEAKING RATE, AND DURATION LENGTH). WE

USE THE WER (%)↓ AND MAF1↑ TO SHOW PERFORMANCES ON ASR AND SER TASKS, RESPECTIVELY. THE BOLD NUMBERS MEAN THE WORST
PERFORMANCES ON ASR OR SER TASKS.

Factor Inter-rater Agreement Speaking Rate Duration Length

Task ASR SER ASR SER ASR SER

Experiments Low Medium High Low Medium High Slow Medium Quick Slow Medium Quick Short Medium Long Short Medium Long

Whisper Large V3 [8] 12.64 12.50 14.15 24.74 12.15 11.47 16.92 12.69 11.38
Whisper Tiny [8] 39.54 38.73 40.95 61.83 39.69 37.41 50.59 40.66 35.43

ASR 21.16 21.14 24.05 36.68 21.67 21.60 28.51 22.95 18.53
SERBO 0.411 0.423 0.296 0.404 0.410 0.405 0.381 0.407 0.423
MTLBO 22.64 24.77 31.75 0.393 0.416 0.306 51.23 25.94 26.18 0.403 0.404 0.400 37.52 27.73 21.84 0.381 0.402 0.413

Whisper-SERBO 23.72 22.87 27.05 0.403 0.408 0.296 42.15 23.88 22.77 0.393 0.397 0.399 31.42 24.94 20.35 0.378 0.398 0.398

show that the models use the standard multi-task learning without
two-stage training. The WER is higher than the results of the ASR
model, so the standard multi-task learning can not benefit the ASR
and SER tasks. However, in the practical application, the ASR task
is very important, so our main goal is to maintain the same level of
performance on the ASR task and have the model recognize emotions.
Based on the results of the proposed framework, Whisper-SER, the
two stages are critical to achieving the goal.

Can we unify ASR and multi-label SER multitasks in one
shared-layer system without ASR performance degradation? Yes.
To overcome the conflicts between SER and ASR, the adapted two-
stage training strategy using the weighting loss (LW

MTL) can mitigate
this issue by keeping ASR performance the same as ASR. Fig. 3
shows the relationship between ASR/SER performances and α values
in Equation 2. Using both encoder and decoder features, Whisper-
SER, when α is 0.8, achieves the best overall performance for both
ASR and SER tasks. The best-performing model, Whisper-SER, has
on-par ASR and SER accuracy with the baseline models (ASR and
SER) on Test1 and Test2.

What are the relationships between ASR and SER perfor-
mances and inter-rater agreement, speaking rate, and duration
lengths? We first combine the test1 and test2 as one test set. Ta-
ble IV summarizes the distributions considering inter-rater agreement,
speaking rate, and duration length across Train, Development, and
Test1+Test2 sets. We calculate the mean and standard deviation (std.)
from the Train set and define two thresholds by (mean - std.) and
(mean + std.) to split the data into three groups (high/slow/short,
medium, and low/quick/long) based on the values of inter-rater
agreement, speaking rate, and duration length, respectively.

Then, we measure the inter-rater agreement of each sentence by

TABLE IV
DATA DISTRIBUTIONS CONSIDERING INTER-RATER AGREEMENT,

SPEAKING RATE, AND DURATION LENGTH ACROSS TRAIN,
DEVELOPMENT, AND TEST1+TEST2 SETS.

Data Set Train Development Test1+Test2

Total Number 84,030 19,815 45,462

Inter-rater Agreement
Low 5.33% 4.11% 4.96%

Medium 79.06% 81.14% 76.79%
High 15.61% 14.76% 18.25%

Speaking Rate
Low 14.97% 3.52% 2.24%

Medium 72.10% 85.01% 79.48%
High 12.94% 11.47% 18.28%

Duration Length
Low 17.59% 16.40% 21.30%

Medium 62.28% 64.65% 61.09%
High 20.13% 18.95% 17.60%

Cohen’s Kappa [33], speaking rate, and duration length on the MSP-
PODCAST. We calculate the mean and standard deviation (std.) from
the train set and define two thresholds by (mean - std.) and (mean +
std.) to split the data into three groups (high/slow/short, medium, and
low/quick/long) based on the values of inter-rater agreement, speaking
rate, and duration length, respectively. The detailed distributions are
summarized in Table IV.

Table III summarizes the performances on the ASR and SER tasks
considering the three factors. To our surprise, all models in Table III
performed worst on the high-agreement samples for ASR and SER
tasks. With the finding on the ASR task, we align with prior studies
[1], [6], [9], [34] that ASR systems have worse accuracy on emotion-
rich utterances than emotion-neutral ones. The potential reason might
be because the pronunciation tends to be wrong in strong emotions
(e.g., anger) [35]. Also, Chou et al. [13] also reported that adding
more ambiguous (lower inter-rater agreement) samples can decrease
performance on the samples that have a high inter-rater agreement,
but adding the ambiguous samples can have better effectiveness and
robustness on the ambiguous samples, which is a real-world scenario
that we can not know which sample has a high or low inter-rater
agreement. This perspective is very important since the previous
studies removed the ambiguous sample from the test set. For instance,
the 19.85% samples in the test set were removed by the plurality rule
on the MSP-PODCAST.

Besides, for the speaking rate and duration length, we found that
the models performed worse on the utterances with a slow speaking
rate (less than two words per second) and the ones with a short
duration (less than 3.39 seconds) on the ASR task. However, there are
no apparent performance differences on the SER task. This is the first
work to observe and reveal the relationship between the performance
of ASR and SER and the three factors.

VI. CONCLUSIONS AND FUTURE WORK

This paper uses the modified two-stage training strategy with the
weighting loss to jointly model ASR and multi-label SER tasks based
on the Whisper architecture and evaluated on the complete test set
of the MSP-PODCAST corpus without discarding any data samples,
such as the samples without consensus label. Our findings indicate
that simultaneous training for ASR and SER with equal weights for
each loss can cause catastrophic forgetting of pre-trained ASR tasks.
To circumvent this issue, we use the two-stage weighting training
method to keep the same ASR and SER performance levels as the
pre-trained ASR and SER models, respectively. The proposed model,
Whisper-SER, gets 29.75% and 63.58% relative reduction in WER
for the ASR task on Test1 and Test2 sets, respectively, compared
to the Whisper Tiny baseline model. However, the Whisper-SER
only gets 4.28% and 1.68% relative reduction in macro F1 on Test1
and Test2 sets, respectively, on the SER task, compared to the
SERBO . In the further analysis, we are the first paper to reveal
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that the modern models perform worse on ASR tasks when the
utterances have a higher inter-rater agreement on emotions, slower
speaking rater, and shorter duration. Also, the study first showed the
possibility of multitasking ASR and multi-label SER models without
ASR performance degradation. In future works, we aim to use LoRa
[36] to use the bigger Whisper model to train the Whisper-SER on
the limited computational GPU resource and deal with imbalanced
emotion distribution by class-balanced loss [37].
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