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Abstract—Few-shot semantic segmentation is a technique with
significant potential for medical image segmentation tasks. Most
existing few-shot semantic segmentation methods require fully
annotated labels for the training process. However, these methods
may not be suitable for medical images, where data collection and
labeling are challenging. To address this issue, this paper pro-
posed an enhanced, few-shot semantic segmentation model with a
new pre-processing step to generate pseudo-labels automatically.
In this paper, parallel computing is also developed to accelerate
image pre-processing. Experiments done on MRI image datasets
present the effectiveness of the new approach since it outperforms
conventional few-shot semantic segmentation methods.

I. INTRODUCTION

Medical image segmentation classifies and locates areas
in medical images, aiding in the diagnosis and treatment of
diseases. Its applications are diverse, from detecting cancer
and classifying organs over images to analyzing images of
the brain and heart. Medical image segmentation presents a
significant challenge for medical experts and image processing
engineers because of the complexity, noise, and large size of
medical images. Therefore, many types of research have been
done to segment medical images. They are divided into two
directions: traditional image segmentation methods and deep-
learning-based segmentation methods.

Traditional image segmentation methods use images’ char-
acteristics, such as color and edge, to analyze the color values
of pixels in the image over different color spaces, such as RGB,
HUE, and HSV. Then, similar color values are grouped into
regions with similar colors. Color-based image segmentation
can be used for simple applications, but outliers, such as
lighting, shadows, and transformations, can reduce accuracy.

Edge-based approaches detect edges and contours to seg-
ment the image into regions. These methods use edge detection
algorithms such as Sobel , Canny , or Laplacian , followed by
an algorithm such as RANSAC to detect points on the edge.
After detecting points on the edge, clustering methods such
as K-means and DBSCAN are applied to group the points
on the edge into objects. In general, edge-based segmentation

methods are often affected by noise and lighting variations, and
segmenting objects of different shapes and sizes is challenging.

Threshold-based image segmentation methods set thresholds
to divide pixels into regions of similar contrast. However,
these methods also have limitations, such as setting thresholds,
which can be challenging and require much experimentation
to find the suitable threshold. Additionally, they could be more
effective with low-contrast images or are affected by noise or
uneven lighting.

Traditional image segmentation methods generally allow
quick and easy implementation. Their fast processing speed is
also advantageous in applications that require fast processing
speed. However, they have some notable disadvantages, such
as producing regions segmented incorrectly or confused with
others in complex images or objects with complex shapes,
being unstable to outliers such as noise or uneven lighting,
and requiring adjusting many parameters to achieve the best
segmentation results, which requires extensive experience and
expertise.

Deep learning methods have recently developed efficient
and accurate medical image segmentation solutions. Notable
among these are the U-net [1], a convolutional neural network
designed for biomedical image segmentation; the V-net, an
extension of the U-net that incorporates volumetric data; and
DeepLab, a state-of-the-art deep learning model for semantic
image segmentation. In general, the performance of deep
learning approaches is excellent. However, these networks all
require labels for training. This is a big drawback because
labeling medical images takes a lot of time and effort, and
it requires well-qualified doctors to be able to label them
correctly.

Recently, deep-learning-based approaches have combined
the traditional model and deep learning architecture to form a
self-learning method that takes advantage of the deep learning
model and does not need to label the data (see Section II).
Among approaches, the ALPNet represents a significant ad-
vancement in image segmentation by combining active learn-



ing with probabilistic deep learning models. It reduces the
labeled data required for training models by iteratively select-
ing the most informative samples for labeling. By integrating
with self-supervised learning (SSL) techniques, SSL-ALPNet
proposed further efficiency and effectiveness than ordinary
ALPNet since pre-training the network using self-supervised
tasks on a large amount of unlabeled data can provide a strong
initialization, reducing the number of learning cycles needed
to achieve high performance.

Although SSL-ALPNet presents a promising approach, it
still has room for improving performance, especially the com-
putational complexity (iterative training, uncertainty estima-
tion). Moreover, the risk of model over-fitting to the noise
in the pseudo-labels during SSL phase can also be enhanced.
Thus, this paper presents a new approach that improves the
above limitations of SSL-ALPNet.

The paper’s organization is as follows: Section II presents
the state-of-the-art deep learning-based approach for medi-
cal segmentation. Section III presents the ALPNet and its
enhanced version by investigating more on the clustering
stage and time computing using parallel ideas. Section IV
evaluates the proposed idea on the publication dataset, and
the conclusion and future work are included in Section V.

II. AUTOMATED PSEUDO-LABEL GENERATION FOR
MEDICAL IMAGE SEGMENTATION

There are medical image segmentation deep-learning-based
methods for medical image segmentation, such as U-net, V-net,
and DeepLab. While these networks require labels for training,
which can be time-consuming for medical images, there is
hope for the future. The self-learning method, pixel grouping,
and deep-learning-based module are potential directions for
improving the efficiency of image segmentation.

The authors in [2] presents an uncertainty-aware semi-
supervised framework for 3D MR image segmentation with
an uncertainty-aware scheme through the student and teacher
models. The teacher model guide and target the student one
to minimize segmentation loss and consistency loss. This
uncertainty-aware scheme enables the student model to grad-
ually learn from meaningful and reliable targets by exploiting
the uncertainty information.

In [3], the authors proposed a multi-task deep network
using a shareware semi-supervised segmentation strategy to
leverage abundant unlabeled data and enforce a geometric
shape constraint on the segmentation output. This network
predicts semantic segmentation and signed distance maps of
object surfaces. This paper also developed an adversarial loss
to enhance the network’s performance further. This loss func-
tion is designed to create a relationship between the predicted
signed distance maps of labeled and unlabeled data. Doing so
encourages the network to capture shape-aware features more
effectively, thereby improving the quality of the segmentation
output.

The authors in [4] present the MC-Net+ network, a potential
approach in semi-supervised medical image segmentation. The

MC-Net+ model introduces two designs. The first design fea-
tures a shared encoder and multiple slightly different decoders.
In contrast, the second design implements a mutual consistency
constraint between one decoder’s probability output and other
decoders’ soft pseudo labels. These two designs enable the
MC-Net+ model to minimize the discrepancy of multiple
outputs and generate consistent results in challenging regions,
thereby promising to revolutionize model training.

In [5], Huimin Wu et al. propose a novel Compete-to-
Win method (ComWin) to enhance the pseudo-label quality
and reduce the critical limitation of the existing state-of-the-
art semi-supervised approach cross with pseudo supervision.
Their essential idea is to generate high-quality pseudo labels
by comparing multiple confidence maps produced by different
networks to select the most confident one. In addition, a
boundary-aware enhancement module is integrated to refine
pseudo labels further in near-boundary areas.

The SemiSL model [6] is a semi-supervised patch-based
contrastive learning framework for medical image segmen-
tation. In SemiSL, the pseudo-labels generated provide ad-
ditional guidance, whereas discriminative class information
learned in contrastive learning accurate multi-class segmenta-
tion. The novel loss in the SemiSL model also synergistically
encourages inter-class separability and intra-class compactness
among the learned representations.

Compared to the successful methods mentioned above, the
model SSL-ALPNet [7] also significantly advanced medical
image segmentation. In this paper, we research and then
develop SSL-ALPNet [7] to improve performance, both in
computational complexity and in reducing the over-fitting of
the noise in the pseudo-labels during the SSL phase. On
the other hand, our proposed method can be enhanced by
incorporating unsupervised models in the SSL phase and
adapted with other deep-learning models instead of ALPNet
to boost semi-supervised medical image segmentation further.

III. PROPOSED APPROACH FOR AUTOMATED
PSEUDO-LABEL GENERATION

Our model is developed from the SSL-ALPNet model [7],
which consists of two phases: offline pseudo-label generation
and online training. The first phase directly affects the model’s
feature learning capability (see Figure 1). Therefore, we focus
on this phase by proposing a novel pseudo-label generation
algorithm instead of using Felsenszwalb’s efficient graph-based
[8] image segmentation algorithm as in the original SSL-
ALPNet model. We also focus on optimizing prediction time
to address more complex real-world challenges.

We selected the SLIC [9] algorithm to generate pseudo-
segmentation labels to ensure segmentation accuracy and
computational efficiency. Compared to the method used in
[7], which employs a graph-based approach for segmentation,
SLIC offers several advantages. Firstly, It is computationally
more efficient due to its linear iterative clustering, with a
computational complexity of O(N), making it suitable for
real-time applications. Secondly, SLIC produces more uniform
superpixels that adhere closely to image boundaries, enhancing
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Fig. 1: Workflow of the superpixel-based self-supervised learning (SSL-ALPNet) [7]

the quality of the segmentation. In contrast, the method used
in [7], with a computational complexity of O(N logN), while
effective in capturing irregular and varied segment shapes,
can be more computationally intensive and may produce seg-
ments that do not align as precisely with image edges. These
characteristics make SLIC a preferred choice for applications
requiring both speed and accuracy in superpixel generation.

A. The SLIC Model

The Simple Linear Iterative Clustering (SLIC) algorithm
is an efficient method for generating superpixels, which are
compact and nearly uniform regions that adhere to image
boundaries. Due to its simplicity and speed, It is particularly
effective for image segmentation tasks, making it a popular
choice in image processing applications.

SLIC operates by clustering pixels in the combined five-
dimensional color and image plane space, each cluster repre-
senting a superpixel. The algorithm can be summarized in the
following steps:

1) Initialization: Initialize cluster centers Ck =
[lk, ak, bk, xk, yk] by sampling pixels at regular grid
steps S. Perturb the centers in a 3× 3 neighborhood to
the lowest gradient position to avoid placing centers at
edges.

2) Assignment: For each pixel p, assign it to the nearest
cluster center whose search region overlaps the pixel.
The distance measure D combines color similarity and
spatial proximity:

D =

√(
dc
m

)2

+

(
ds
S

)2

(1)

where dc is the color distance in CIELAB space, ds is
the spatial distance and m is a compactness factor that
balances the two distances.

3) Update: Update the cluster centers by computing the
mean l, a, b, x, y values of all pixels assigned to each
cluster.

4) Iteration: Repeat the assignment and update steps until
convergence, typically defined by a minimal change in
cluster centers.

B. Improving the Time Computing

Although SLIC has lower computational complexity than
Felsenszwalb’s graph-based image segmentation algorithm
used in [7], we aimed to accelerate the pre-processing step
further to reduce the time training model. By utilizing parallel
computing on multiple CPU threads, we allow for concurrent
image processing and significantly reduce the processing time
by distributing the workload across several threads.

1) Parallel Computing Approach: Our approach to parallel
computing is a testament to efficiency. By dividing the task into
smaller sub-tasks and executing them simultaneously on mul-
tiple processors, we’ve significantly enhanced the efficiency
of the pre-processing step. This allows us to process various
images concurrently, assigning each to a different CPU thread
for simultaneous processing.

• Thread Allocation: We allocate a specific number of
CPU threads based on the available cores. Each thread
processes a distinct image, ensuring balanced workload
distribution and maximizing CPU utilization.

• Synchronization: While each thread processes its as-
signed image independently, synchronization mechanisms
ensure that all threads start and complete their tasks
coordinately. This avoids conflicts and ensures efficient
resource management.

• Load Balancing: Dynamic load balancing techniques
ensure that all threads complete their tasks approximately
simultaneously. This avoids scenarios where some threads
are idle while others are still processing.

• Memory Management: Efficient memory management
is crucial in parallel processing to prevent bottlenecks.
Shared resources are carefully managed to ensure that
threads can access necessary data without significant
contention.
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2) Implementation Details: To implement parallel process-
ing of multiple images, we used threading modules in Python,
which provide high-level abstractions for parallel program-
ming. The steps involved in our parallel implementation are
as follows:

• Image Allocation: The set of images to be processed
is divided among the available threads. Each thread is
assigned a subset of the images.

• Parallel Processing: Each thread independently pro-
cesses its assigned images using the SLIC algorithm. This
includes all steps of the SLIC process, from initialization
to convergence.

• Global Synchronization: After processing all assigned
images, threads synchronize to ensure that the entire batch
of images has been processed before proceeding to the
next batch.

• Result Compilation: The results from all threads are
compiled into a unified output, maintaining the segmen-
tation results for each image.

3) Performance Evaluation: We conducted extensive ex-
periments to evaluate the performance of our parallel im-
plementation. The results (see Section IV) show a signifi-
cant reduction in processing time compared to the sequential
version, especially when processing large batches of images.
The algorithm’s scalability was also tested, demonstrating that
the parallel implementation scales well with the number of
CPU cores. This parallelization approach accelerates the pre-
processing step and enhances the overall efficiency of the
image processing pipeline, making it highly suitable for real-
time and high-resolution image processing tasks.

In conclusion, by utilizing parallel computing for the pre-
processing step, we achieved significant improvements in pro-
cessing time without altering the core SLIC [9] algorithm. This
approach ensures that the algorithm can meet the demands of
modern image processing applications, providing both speed
and accuracy in superpixel generation.

IV. EXPERIMENTAL AND RESULT

A. Dataset

We utilized the Abd-MRI dataset sourced from the ISBI
2019 Combined Healthy Abdominal Organ Segmentation
Challenge (Task 5) [10], comprising 20 3D T2-SPIR MRI
scans. Each scan in the dataset was converted into 2D ax-
ial slices and resized to dimensions of 256 × 256 pixels.
Standard pre-processing procedures were applied, including
normalization and augmentation. Each 2D slice was replicated
three times along the channel dimension to accommodate the
network architecture.

B. Experimental Settings

The parameters are established in a similar experiment to
[7]. We use the Dice score (0-100, with 0 indicating no overlap
and 100 indicating perfect overlap), a standard medical image
segmentation research metric, to assess the overlap between
predicted and ground truth segmentation. For evaluating 2D

segmentation on 3D volumetric images, we adhere to the
protocol established by [11]. Within a 3D image, for each class
ĉj , images between the top and bottom slices containing ĉj are
divided into C equally spaced chunks. The middle slice in each
chunk from the support scan is the reference for segmenting
all slices in the corresponding chunk in the query scan. In our
experiments, C is set to 3. Notably, the support and query
scans originate from different patients.

To evaluate generalization to unseen test classes, we en-
sure test classes are entirely unseen by removing any image
containing a test class from the training dataset. We evaluate
the model’s ability to generalize to unseen semantic classes,
testing its robustness in scenarios where new classes arise that
were not present during training.

1) Dataset Preparation: Exclude any images containing
the testing classes from the training dataset to ensure
the model is trained without exposure to these specific
classes.

2) Training: Train the model using only the remaining
annotated data. The model learns to segment based on
standard features and structures in the training data
without explicit knowledge of the testing classes.

3) Testing: Evaluate the model on images containing the
unseen testing classes. These classes are entirely novel
to the model, having been excluded from the training
phase. Measure how effectively the model can generalize
its learned features and segmentation strategies to new,
previously unseen classes.

The experiments in this section are conducted under a 1-way
1-shot setting to simulate the limited availability of labeled data
in clinical practice.

The network is implemented in PyTorch based on the
official PANet implementation [12]. To achieve high spatial
resolutions in feature maps, fθ(·) is configured as an off-the-
shelf fully convolutional ResNet101, pre-trained on a subset
of MS-COCO to enhance segmentation performance [12], [13]
(similar to the vanilla PANet in our experiments). It processes
a 3× 256× 256 image and generates a 256× 32× 32 feature
map. The local pooling window (LH , LW ) for prototypes is
set to 4 × 4 during training and 2 × 2 during inference on
feature maps.

C. Comparative Experiments
Table II shows that the proposed SLIC [9] method is

generally more stable and accurate than existing methods.
Tables II compare our method with vanilla PANet, one of

the most advanced methods for natural images, as well as
SE-Net [11], the latest approach for few-shot segmentation
in medical images. Our proposed method, utilizing automatic
label generation combined with ALPNet [7], achieves superior
performance in these comparisons without manual annotation.
Importantly, Table II highlights the strong generalization ca-
pability of our approach to unseen classes. Our proposed self-
supervised learning method based on automatic label genera-
tion has successfully trained the network to learn diverse and
generalizable image representations from unlabeled data.
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REFERENCES REFERENCES

Original image

Truth ground MeanShift SLIC Felzenszwalb

TABLE I: Experiment results (in Dice score) on abdominal images.

Method Manual Annotation Left kidney Right kidney Spleen Liver Mean

SE-Net [11] ✓ 62.11 61.32 51.80 27.43 50.66
Vanilla PANet [12] ✓ 53.45 38.64 50.90 42.26 46.33
MeanShift-ALPNet × 50.03 46.25 56.44 42.78 48.88
SSL-ALPNet [7] × 73.63 78.39 67.02 73.05 73.02
Proposed method × 82.53 82.04 80.61 80.35 81.38

The ALPNet model has demonstrated strong generalization
capabilities for object features compared to existing methods.
As seen in Figure II, the newly proposed pseudo-label gener-
ation method improves over the technique used in [11], [12].
SLIC generates segments closer to the ground truth labels
compared to [8], [14].

In addition, SLIC can speed up the pre-processing process
compared to the method used in [7]; the results can be tracked
in Table II. The execution time is significantly reduced, mainly
when parallel computing is applied.

TABLE II: Time computing in pre-processing process done on
Intel Core i7-10750H CPU, 6 Core(s)

Method used in offline
pseudo-label generation

Frames/s

Felzenszwalb [8] 13
SLIC [9] 28

SLIC-Parallel 91

To further elucidate the impact of the size and shape of
pseudo-labels on the model, we experimented with another
pseudo-label generation method, MeanShift [14]. MeanShift
can generate pseudo-labels with more accurate contours for
smaller objects than SLIC. However, it tends to produce more
significant segments for larger organs than usual. As shown in
Table I, the model’s accuracy significantly decreased.

The results show that the size of the pseudo label signif-

icantly impacts the model’s accuracy, not only if the labels
are too coarse. Alternatively, pseudo labels that are too fine-
grained might divert the granularity of clusters in the learned
representation space from that of actual semantic classes.

V. CONCLUSION

The paper introduces a method for pseudo labels automat-
ically combined with existing deep learning models, forming
a self-supervised few-shot segmentation framework. The pro-
posed method has outperformed the modern method; the state-
of-the-art method requires no manual training. It also repre-
sents a significant improvement over existing supervised self-
learning models. The ability to generalize to unseen classes
outperforms its predecessor. Furthermore, we optimized the
pre-processing process through parallel computing, enabling
the model to solve more complex problems. Importantly, this
optimization also allows the model to operate in real time,
demonstrating the practical applicability of our method and its
potential for the future of supervised self-learning models.

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,”
Medical Image Computing and Computer-Assisted In-
tervention (MICCAI), pp. 234–241, 2015.

5



[2] L. Yu, S. Wang, X. Li, C.-W. Fu, and P.-A. Heng,
Uncertainty-aware self-ensembling model for semi-
supervised 3d left atrium segmentation, 2019. arXiv:
1907.07034 [cs.CV].

[3] S. Li, C. Zhang, and X. He, “Shape-aware semi-
supervised 3d semantic segmentation for medical im-
ages,” in Lecture Notes in Computer Science. Springer
International Publishing, 2020, pp. 552–561, ISBN:
9783030597108.

[4] Y. Wu, Z. Ge, D. Zhang, et al., Mutual consistency
learning for semi-supervised medical image segmenta-
tion, 2022. eprint: 2109.09960.

[5] H. Wu, X. Li, Y. Lin, and K.-T. Cheng, “Compete
to win: Enhancing pseudo labels for barely-supervised
medical image segmentation,” IEEE Transactions on
Medical Imaging, vol. 42, no. 11, pp. 3244–3255, Nov.
2023, ISSN: 1558-254X.

[6] H. Basak and Z. Yin, “Pseudo-label guided contrastive
learning for semi-supervised medical image segmenta-
tion,” in 2023 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), 2023, pp. 19 786–
19 797.

[7] C. Ouyang, C. Biffi, C. Chen, T. Kart, H. Qiu, and D.
Rueckert, “Self-supervision with superpixels: Training
few-shot medical image segmentation without annota-
tion,” arXiv preprint arXiv:2007.09886, 2020.

[8] P. F. Felsenszwalb and D. P. Huttenlocher, “Effi-
cient graph-based image segmentation,” in International
Journal of Computer Vision, Springer, vol. 59, 2004,
pp. 167–181.

[9] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S.
Susstrunk, “Slic superpixels,” Computer Vision–ECCV
2010, pp. 849–862, 2010.

[10] A. Kavur, N. Gezer, M. Barı¸s, et al., “Chaos chal-
lenge–combined (ct-mr) healthy abdominal organ seg-
mentation,” arXiv preprint arXiv:2001.06535, 2020.

[11] A. Roy, S. Siddiqui, S. Pölsterl, N. Navab, and C.
Wachinger, “’squeeze excite’ guided few-shot segmen-
tation of volumetric images,” Medical Image Analysis,
vol. 59, p. 101 587, 2020.

[12] K. Wang, J. Liew, Y. Zou, D. Zhou, and J. Feng, “Panet:
Few-shot image semantic segmentation with prototype
alignment,” pp. 9197–9206, 2019.

[13] H. Shin, H. Roth, M. Gao, et al., “Deep convolutional
neural networks for computer-aided detection: Cnn ar-
chitectures, dataset characteristics and transfer learning,”
IEEE Transactions on Medical Imaging, vol. 35, no. 5,
pp. 1285–1298, 2016.

[14] D. Comaniciu and P. Meer, “Mean shift: A robust
approach toward feature space analysis,” in IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 24, IEEE, 2002, pp. 603–619.

6

https://arxiv.org/abs/1907.07034
2109.09960

	Introduction
	Automated Pseudo-Label Generation for Medical Image Segmentation
	Proposed Approach for Automated Pseudo-Label Generation
	The SLIC Model
	Improving the Time Computing
	Parallel Computing Approach
	Implementation Details
	Performance Evaluation


	Experimental And Result
	Dataset
	Experimental Settings
	Comparative Experiments

	Conclusion

