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Abstract—This paper considers a technique to estimate the
material of ground surfaces directly below the drone based on
the rotor noise generated by the drone. It is anticipated that this
technique will enable us to assess the damage in areas that are
not easily accessible by humans. In this study, drone noise was
recorded while flying over multiple materials, such as asphalt, soil,
and water, in a real environment with external noise, such as wind.
Following, a machine learning-based model was trained using this
dataset to classify the various materials using the recorded audio.
Results indicate that while the classification was successful, there
is a need for a classification method that is more robust to external
noise.

I. INTRODUCTION

In recent years, natural disasters such as earthquakes and
landslides caused by torrential rains have become more fre-
quent and often cause significant damage. In Japan, Typhoon
No. 19 in 2019 caused more than 950 landslides in 20
prefectures, mainly in eastern Japan [1], and torrential rain
that hit Kumamoto Prefecture in July 2020 caused several
national roads to be closed due to overflowing rivers and
landslides. Furthermore, the 2024 Noto Peninsula earthquake
that occurred in January of this year caused more than 90
sections of prefectural roads to be closed to traffic [2]. Natural
disasters caused by extreme weather and other factors are on
the rise, not only in Japan but around the world [3], and
countermeasures and responses are required.

One solution to these problems is the use of highly manoeu-
vrable drones. Drones can be used to quickly and inexpensively
survey areas that are difficult to access directly by humans.

In this paper, we make use of the fact that the acoustic signal
recorded by the microphone mounted on the drone includes
not only noise directly from the drone’s rotors, but also rotor
noise that is reflected once on the ground surface. As such, we
can address the problem of ground surface material estimation
using this reflected sound with deep learning. Since there is
no dataset for estimating the ground surface material outdoors,
the creation of such a dataset will be conducted as well. In
addition, since there is concern about the effects of external
noise caused by strong winds in an outdoor environment, we
also propose a custom-made windshield for the microphone
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array used in this study and investigate its effect against various
forms of windshield materials.

II. RELATED WORK

The majority of studies conducted to assess the disaster
situation by installing sensors on drones utilize cameras and
microphones as sensors [4]. Although cameras are effective
sensors and have been employed in disaster-stricken areas,
their use is limited under conditions of poor visibility, such
as at night. Microphones, however, are immune to such lim-
itations and are currently being investigated as a potential
solution, often referred to as ”drone audition” [5]–[10].

Most drone audition approaches involve suppressing drone
rotor noise in order to detect voices coming from victims. In
other words, research has been conducted with the objective
of suppressing drone rotor noise. On the other hand, this paper
takes a different approach to drone audition research in that
it actively utilizes drone rotor noise not as an object to be
suppressed but as useful information for understanding the
material properties of the ground surface. If ground surface
material estimation through reflected drone rotor noise is
feasible, as illustrated in Fig. 1, it opens the possibility to
detect landslides or road collapses by identifying changes in
ground surface material or features. This is expected to be
beneficial in comprehending the extent of the damage. To the
best of our knowledge, few such studies have been conducted,
with the exception of ours. Additionally, while our previous
study [11] estimates the ground surface material using noise
recorded while changing the ground surface material, it has
yet to show that it is effective in a real environment. This is
due to the data being recorded in an anechoic chamber, and
thus noise other than drone rotor noise (e.g. wind noise) was
not considered. Furthermore, the amount of data measured was
extremely small (about one minute for each condition).

A potential application that utilizes research on the esti-
mation of material properties from acoustic signals includes
the sound impact inspection of bridge structures. Generally, in
such inspections, skilled workers estimate the characteristics
and degree of deterioration of bridge structures from the sound
generated when the bridge is struck. However, recent years
have seen a growing number of studies conducted to learn the
skills of skilled inspectors using machine learning methods



Fig. 1: Necessity of ground surface material estimation.

to obtain equivalent performance [12]. Some of these studies
have reported the use of drones equipped with a percus-
sion inspection function [13]. However, these studies were
conducted on concrete, and no research has been conducted
from the viewpoint of discriminating various materials from
the reflected sound. Furthermore, drone rotor noise is treated
as unnecessary background noise even when a drone with a
percussion inspection function is used, and there is a lack of
perspective on actively using drone noise, as in this paper.

III. DATASET CONSTRUCTION

A. Guidelines for dataset design

The factors that affect the recorded drone rotor noise include
not only the material of the ground surface but also the drone’s
altitude, the rotational speed of each motor, and the geometry
of the ground surface. In this paper, as a preliminary step in
the application to outdoor environments, we decided to create
a dataset based on the following guidelines.

1) All parameters are fixed except for the ground surface
material and the drone’s altitude.

2) The ground surface material is selected based on the
actual disaster situation.

3) For the drone altitude, two types of altitude are set: one
is the same height as that often used in actual disaster
rescue scenes, and the other is lower than that but still
high enough to reach above the human head. (This is
because it is anticipated that the attenuation level of
reflected drone noise, when flown too high, will make
material estimation difficult.)

4) To secure the amount of data, the recording time for each
material is as long as possible within the limits of the
drone’s battery.

B. Dataset creation method

As shown in Fig. 2, a 16-channel spherical microphone array
is installed a distance forward of the drone, and a Raspberry
Pi for recording and storage is installed at the rear. The
installation position is adjusted with consideration of the center
of gravity of the drone. In this state, when the drone is in
operation, the radiated noise from the rotors is recorded by all
channels of the microphone array for various types of ground
surface materials.

The materials selected for the ground surface were soil,
asphalt, and water. Two types of water surface were se-
lected: 0.7 m deep (hereafter, ”shallow water”) and 5 m deep
(hereafter, ”deep water”), for a total of four materials. All
surfaces were nearly horizontal, without any slopes or large

(a) Drone with equipments.

1
2 3 4

5678
9

10 11

12

13

14

16

15

Dro
ne→

(b) Mic. array channel arrange-
ment.

Fig. 2: Drone and microphone array for recording.
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Fig. 3: Ground surface materials.

irregularities. The surface of each material is shown in the
Fig. 3. Two drone altitudes, 5 m and 10 m, were selected in
accordance with the previously established guidelines.

Audio recording was first conducted at an altitude of 5 m
above each material for 8 minutes while hovering. Upon
completion, the drone ascended to an altitude of 10 m and
recorded for another 8 minutes while hovering. For safety
reasons, if the drone’s low battery alarm sounded during the
recording, the recording process was terminated and the drone
was immediately returned for landing. In fact, during data
collection for audio at an altitude of 10 m in shallow water,
the recording was stopped after 6 minutes and 20 seconds due
to the drone’s low battery alarm sounding midway through
the recording. This was probably because the drone’s battery
consumption was higher than expected due to the strong winds.
Eventually, we were able to record approximately 1 h of data.
The other conditions are shown in TABLE I.

C. Analysis of recorded data

To ascertain whether the recorded drone noise exhibits any
anomalies, we conducted a comprehensive examination of

TABLE I: Dataset preparation specifications.

Aircraft in use DJI Matrice 210
Number of array channels 16 (Sphereical)

Sampling rate 16 kHz
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Fig. 4: Occurrences of sound clipping.

the spectrogram and waveforms, complemented by a detailed
auditory analysis. This process led to the identification of two
defects.

• Sound clipping is frequently observed in the recorded
data.

• There are intervals in which the recorded data value is
zero or very close to zero.

Fig. 4 shows a spectrogram of the recording of the 14th
channel (located at the rear side, see Fig. 2(b)) recorded
over shallow water, with brighter colors indicating stronger
intensity. It can be seen that impulsive signals are frequently
recorded in the low and high frequency bands. The sound
clipping caused by such impulsive noise occurs at a common
time in many channels. This indicates that the cause of
the clipping was strong winds during the recording. When
such clipping occurs, the reflected sound signal cannot be
picked up properly, which may result in degraded estimation
performance. In contrast, a spectrogram from recordings of
the 10th and 11th channels recorded above the soil in Fig. 5
illustrates a phenomenon in which the value of the recorded
data becomes zero. As shown, especially in the 11th channel,
nearly 90% of the recordings have a value of zero. The length
of time and frequency of this phenomenon differ from channel
to channel and recording to recording. After consulting with
the microphone manufacturer, it was found that strong winds
can cause the diaphragm of the MEMS microphones used to
be stuck to the inner wall of the microphone, resulting in
extremely low sensitivity.

As mentioned in Sec. III-B, it was windy at the time
of recording, with an average wind speed of 4˜7m/s and a
maximum of 17 m/s observed with the anemometer on hand.
As a consequence of the aforementioned issues, a significant
proportion of the dataset is unusable for ground surface ma-
terial estimation. Consequently, only the usable parts of the
recorded noise was extracted for the formation of the dataset.
The specific method is described in Sec. V-A.
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Fig. 5: Interval in which data value is zero.

(a) Windshield components. (b) Attached to microphone array.

Fig. 6: Proposed windshield.

IV. WINDSHIELD INSTALLATION ON MICROPHONE ARRAY

As a consequense of the findings from Sec. III-C, in order
to robustly perform ground surface material estimation in an
outdoor environment, it is critical to address the presence of
external noise, including strong winds. One effective approach
to achieve this is by attaching a windshield to the microphone
array. Materials with porous structures are renowned for their
exceptional sound absorption capabilities, with polyurethane
being a particularly prevalent choice in civil construction and
transportation applications [14]. We propose the use of a
windshield made of porous polyurethane foam, as illustrated
in Fig. 6. This windshield is capable of enclosing the entire
microphone array through the combination of two hemispher-
ical parts. The material utilized for this windshield contains
numerous air bubbles within the windshield due to its inherent
ability to expand 100 times in volume when combined with
water. Consequently, it is remarkably lightweight at 21 grams
in total, making it an ideal choice for use in drones with tight
payload restrictions, and it is also anticipated to exhibit high
sound absorption properties.

In this paper, we verify the performance of the windshield
through experiments to determine whether ground surface ma-
terial estimation is possible using drone noise recored with the
proposed windshield attached to the microphone array. Details
regarding the methodology and results of the experiment can
be found in Sec. V-B.
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V. EVALUATION

A. Ground surface material classification

The feasibility of the created dataset was evaluated by
proposing a machine learning-based drone noise to ground
surface material classifier.

1) Data to be used: It is necessary to eliminate from the
recorded data any intervals that are unsuitable for the purposes
of training and estimation. Specifically, the following steps
were taken:

• The material was limited to three types: soil, asphalt, and
shallow water.

• Only data collected at an altitude of 5 meters were used.
• For the shallow water recordings, the sections with severe

clipping (the initial one minute and a half and the last 10
seconds) were removed and 6 minutes 17 seconds of the
eight minutes were extracted.

• Data with intervals which data value is zero among 16
channels were removed (found in channels 1, 4, 9, 10,
12, 13, 14, and 15).

Hereafter, shallow water is simply referred to as “water”.
2) Networks and experimental conditions: In conducting

deep learning-based classification, two networks were em-
ployed as classifiers: a four-layer convolutional neural network
(CNN) depicted in Fig. 7 and ResNet18 [15] utilized in
previous study [11]. To create the input data for the net-
works, each recording was divided into three different sections
(training, validation, and test), and converted into the time-
frequency domain using short-time Fourier transform (STFT)
under the conditions outlined in TABLE II. Subsequently,
the spectrograms were extracted with a data length of 256
frames and a shift length of 128 frames, and the real and
imaginary components of each extracted spectrogram were
utilized as input. In this experiment, eight channels were
utilized, resulting in the acquisition of 1,094 input features
with a length of 16×256×256 for training, and 106 for both
the validation and testing. The labels of the training data were
three-dimensional one-hot vectors corresponding to the ground
surface materials.

TABLE III illustrates the length of each section in each
recording, and TABLE IV illustrates the training conditions
for the CNN and ResNet18. The epoch with the optimal
performance was selected for evaluation within the range
where overlearning does not occur based on the learning curve.
The evaluation was conducted using the following accuracy
measure.

Accuracy(%) =
Number of correctly classified samples

Total number of samples
×100

Additionally, the confusion matrices were computed and
analyzed for trends by material.

3) Results: TABLE V illustrates the appropriate response
rate for each data section. The accuracy of the test data was
70.8% for the CNN using the model at the conclusion of
24 epochs and 82.1% for ResNet18 using the model at the
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Fig. 7: CNN architecture used in this experiment.

TABLE II: STFT parameters

STFT frame length 512
STFT hop length 128

STFT window function Hanning window

conclusion of 38 epochs. The confusion matrix heatmaps in
these cases are shown in Fig. 8.

4) Discussions: As shown in TABLE V, the accuracy for
the CNN on the test data is as high as 70%, while the accuracy
on the validation data is only 38%. In light of the fact that
the task in this paper is 3-class classification task and the
accuracy is only 33%, it would be premature to accept these
results at face value. An analysis of the cause is therefore
necessary. The next step is to shuffle the data and perform
cross-validation in order to ascertain the source of the bias.
Conversely, ResNet18 yielded an accuracy exceeding 80%
for all data sections, suggesting that the learning process
for ground surface material estimation was effective. It is
postulated that the superior learning capabilities of ResNet18
relative to CNN are attributable to its greater number of layers,
which facilitate the suppression of noise other than reflected
sound.

The heatmaps of the confusion matrices indicate that while
both networks demonstrate high reproducibility for asphalt and
soil, the reproducibility for water is relatively low. In particular,
the CNN did not have any data point that could be estimated as
water, indicating that it was not possible to distinguish between
water and asphalt. This is likely due to the dynamic nature of
the wind generated by the drone’s propeller, which causes the
water surface to be in a state of flux, and the irregularity of the
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TABLE III: Time length of each section (seconds)

Section Training Validation Test
Asphalt 405 40 40

Soil 407 40 40
Water 313 32 32

TABLE IV: Training parameters

Loss function Cross entropy
Optimizer Adam

Learning rate 10−4

Epochs 100

characteristics of the reflected sound. However, this remains a
hypothesis at this point, and future analysis will be conducted
in conjunction with the performance differences among the
networks.

B. Windshield effects

1) Experimental conditions: A running car was used to
record the sound in order to reproduce a high wind envi-
ronment. Specifically, a jig with a microphone array attached
was held out of the window from a moving car to record
the target sounds (whistle sound and voice). The microphone
array was kept at approximately 1 m from the car window
while controlling it so that it did not rotate. To assess the
efficacy of the proposed windshield, the following four types
of microphone arrays were utilized.

1) No windshield was attached.
2) The windshield proposed in this paper was attached.
3) A 10 mm thick polyurethane (PU) foam material was af-

fixed to cover the few channels located on the windward
side.

4) A 10 mm thick polyethylene (PE) foam material was af-
fixed to cover the few channels located on the windward
side.

The recordings were made on a circuit of approximately
350 m per lap, with three to six laps run for each condition. To
measure the wind speed, the anemometer was placed outside
the window along with the jig. The wind speed during the
run ranged from 12 to 20m/s, with no significant differences
between each condition. The performance of the windshield is
evaluated by comparing the spectrum and the rate of clipping
occurrence per unit time for 13th channel, located on the
windward side, of each recording.

2) Results and Discussions: Fig. 10 shows a spectrum of
the recordings from each windshield configuration. It can be
observed that the proposed windshield exhibits a sound insula-
tion effect of approximately 10 to 20 dB across a wide range of
frequencies, with the highest level of sound insulation overall
compared to other foams. In particular, the sound insulation
performance is markedly elevated in the high-frequency range
above 3000 Hz. Given that the target sound in this experiment
is situated between 100 and 3000 Hz and that wind noise is
replete with high-frequency components, it is anticipated that
the proposed windshield will be effective in preventing sound
clipping due to strong winds.

TABLE V: Accuracy (in % of correct material estimation) for
each method and dataset.

Network Training Validation Test
CNN 68.1% 36.8% 70.8%

ResNet18 100% 70.8% 82.1%

Fig. 9: PU foam (left in the figure) and PE foam (right in the
figure)

TABLE VI depicts the number of observation points per
second, wherein the absolute value of the recorded sound
observation exceeded a specified threshold (th). While other
foam materials did not prevent sound clipping, the proposed
windshield does not have a single data point that suggests
sound clipping, and the absolute value of the maximum
observed value is approximately 0.67, indicating that the
windshield can withstand even stronger winds. Therefore,
together with the spectrum shown earlier, it can be shown that
the proposed windshield is extremely effective against strong
winds.

VI. CONCLUSION

In this paper, we presented a robust ground surface esti-
mation method from drone noise reflections. To this end, we

Fig. 10: Spectrum of recordings from each windshield config-
uration.
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TABLE VI: the observation points where the absolute value
≥ th per second

threshold bared shield(proposed) PU foam PE foam
th = 0.99 16.59 0 0.358 0.682
th = 0.9 41.73 0 1.433 2.317

created a dataset of rotor noise and four types of ground surface
materials (soil, asphalt, and two types of water at different
depths) in an outdoor environment. Based on this dataset,
we developed a convolutional neural network (CNN) and
ResNet18-based ground surface material estimation method for
the three types of materials except for deep water. The efficacy
of the developed method was evaluated using the generated
datasets, and a 70.8% correct response rate was observed on
ResNet18. Moreover, we proposed a novel windshield for the
microphone array as a means of mitigating external noise, and
demonstrated its efficacy in preventing sound clipping caused
by strong winds. The forthcoming stages of this project will
involve the expansion of the dataset, data recording using the
proposed windshield, an analysis of the ease of identification
due to differences in networks, and real-time processing.
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