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Abstract—Multispectral satellite imagery captures rich in-
formation of the Earth surface from an extensive range of
wavelengths that enhances the understanding and discrimination
of Earth objects. When integrated with multi-label classification,
it has great potential to provide perceptual comprehension of
land cover that exceeds the details observable from the visible
light spectrum (RGB). However, the variety of spectral bands
each capture a different aspect of the earth, thus can be
challenging to identify the optimal spectral band, and their
combinations for a classification task. To overcome these issues,
this study leverages on deep learning by exploring various
band combinations and neural network architectures for multi-
label classification. Specifically, the performance of triplet band
combinations was explored and compared against standard RGB
imagery, using ResNet101 as the backbone and the incorporation
of the Class Specific Residual Attention (CSRA) mechanism.
We then propose the multi-stream triplet band fusion model
with Vision Transformer (ViT) backbone and CSRA for multi-
label satellite image classification. We found that in the single
triple band input approach, the ShortWave InfraRed (SWIR1 or
SWIR2) combinations is able to improve F1 scores by 1.25% to
2.02% compared to models using only RGB bands. More notably,
our proposed multi-stream approach that fuses the triplets of
RGB and Vegetation bands outperformed all other models with
an F1 score of 0.7484, consistently surpassing the ResNet-101
backbone baseline with similar configurations. These findings
reveal the potential of band combination approaches to enhance
the Earth object discrimination and land cover analysis.

I. INTRODUCTION

Multispectral satellite imagery, which captures a wide range
of spectral bands beyond the visible spectrum, has become
an invaluable tool for detailed Earth observation. Unlike tra-
ditional RGB images, multispectral images offer enhanced
discrimination of various land cover types as they provide
additional spectral information that can differentiate objects
appearing homogeneous in RGB imagery [1], [2]. This added
spectral resolution allows for more precise analysis and classi-
fication of land cover, which is important for applications like
environmental monitoring, agriculture, and urban planning [2].

The varied reflectance behaviors of different Earth objects
across multiple wavelengths enable the experimentation with
different band combinations to improve object differentia-
tion. However, utilising multispectral imagery for classification
poses significant challenges. For instance, using all available
bands for the classification of remote sensing images can
lead to the curse of dimensionality [3], where the increase
in noise worsens classification performance [4]. Reducing the
number of bands is a way to avoid this problem, but the

(a) Model pipeline for single input triplet band combination analysis.

(b) Proposed multistream model with CSRA for two triplet inputs for
improved multi-label classification.

Fig. 1: Multi-band multi-label satellite image classification
frameworks.

selection of optimal bands can be difficult due to the sheer
number of spectral bands available [5]. Additionally, in multi-
label datasets, the multiple labels can co-occur in complex
patterns, where a single image may contain multiple classes
such as water, vegetation, and urban areas, which can appear
simultaneously but with varying spatial distributions. This
makes it difficult for a model to correctly identify and classify
all relevant labels in a single representation.

In this study, we aim to explore the effect of different
combinations of multispectral bands for multi-label satellite
imagery classification. We utilized the BigEarthNet43 [6]
multispectral dataset for experimentation with various band
combinations and trained various multi-label classifiers by
adopting the ResNet101 [7] as the baseline backbone and the
Class Specific Attention (CSRA) module [8] for multi-label
classification. Lastly, we designed a multi-stream model with
ViT backbone, that takes in two band triplets as “images”
and concatenates their feature maps for the final multi-label
classification by the CSRA module as shown in Fig. 1.
The contributions of the work can be summarised as follows:



• A comparative study on multispectral band combinations
for enhancing multi-label satellite image classification.
To the best of our knowledge, there has yet to be any
work that explores such band combinations for multi-label
classification using multispectral data.

• An empirical analysis on band combinations and their
contributions to specific classes in multi-label classifica-
tion. We found that combinations containing ShortWave
InfraRed (SWIR1 or SWIR2) improved F1-scores by
1.25-2.02% over RGB-only models, consistently.

• A novel multi-stream approach using the Vision Trans-
former (ViT) backbone, fusing RGB and vegetation
(VEG) band triplets with CSRA module for multi-label
satellite image classification. The model achieved an F1
score of 0.7484, outperforming all other tested models.

II. RELATED WORK

With the recent rise in the number of large scale multi-
label satellite image datasets, this opens up more avenues
for exploring multi-label satellite image classification. Despite
this, the research in multi-label classification specifically for
multispectral satellite datasets with a large number of samples
and class labels is still lacking. Moreover, in the image
classification domain, RGB images are most widely used.

For instance, [9] introduced a CNN-based model for hier-
archical multi-label annotation, incorporating attention mod-
ules and skip-layer connections to enhance discriminative
capabilities. Using Inception-ResNet-v2 as a feature extractor
pretrained with ImageNet weights, the model integrates atten-
tion modules and skip-layer connections in the classification
branch, and employs embedding learning to preserve scene-
level semantic similarity. It achieved significant improvements
in the harmonic mean of label-based and example-based F1
scores (H-F1) when evaluated on datasets like RGB UC-
Merced, Ankara, and RGB Multi-label AID.

Alternatively, optimal band combinations had been explored
for Landsat-8 in land use and land cover (LULC) classification
using Support Vector Machine (SVM) [3]. Addressing the
‘curse of dimensionality’, the study compared various three-
and four-channel band combinations to using all bands, se-
lecting combinations through correlation analysis. The SVM
model was specifically trained and evaluated on Landsat-8 with
4 LULC classes in single label classification. Similarly, [5]
used a Mask-RCNN to explore optimal band combinations for
mapping permafrost tundra landforms, targeting tussock and
non-tussock sedge vegetation. The WorldView-02 satellite data
was evaluated with five three-band combinations. The Mask-
RCNN model, with a ResNet-101 backbone pre-trained on the
COCO dataset and retrained on 40,000 annotated ice-wedge
polygons, processed 200x200 pixel image tiles. They found
that triplets of band combinations were most effective.

As a whole, while there have been advancements in multi-
label satellite image classification and optimal band combina-
tions, there is considerable potential for further exploration in
multispectral datasets with extensive samples and class labels.
Thus, our study aims to address this gap by investigating novel

band combinations and advanced models to enhance classifi-
cation accuracy and leverage the full potential of multispectral
data.

III. METHODOLOGY

A. Band Combinations

In multispectral satellite imagery, combining and rearrang-
ing spectral bands into RGB channels is a commonly used
technique [1]. This technique produces false colour composites
images, which make discerning certain classes easier as it is
able to highlight various difference Earth objects.

Table I shows the types of spectral bands captured by the
Sentinel-2 satellite that is used to collect the BigEarthNet43
dataset. Spatial resolution for the Sentinel-2 ranges from 10m
to 60m, where the 10m bands are standard satellite image
bands used for land cover classification, and 20m bands are
used for vegetation monitoring, whereas bands relating to
atmospheric correction have a resolution of 60m [10].

TABLE I: Sentinel-2 Spectral Bands [11].

Band Description Resolution (m) Center
(nm)

Band
(nm)

B01 Coastal aerosol 60 443 20
B02 Blue 10 490 65
B03 Green 10 560 35
B04 Red 10 665 30
B05 Vegetation red edge 20 705 15
B06 Vegetation red edge 20 740 15
B07 Vegetation red edge 20 783 20
B08 NIR (Near Infrared) 10 842 115
B09 Water vapor 60 940 20
B11 SWIR1 20 1610 90
B12 SWIR2 20 2190 180

B8A Narrow NIR (Near
Infrared) 20 865 20

The main hypothesis of this exploration is the positive
impact of band combinations on classification performance,
where specific combinations can result in significant improve-
ments in accuracy [12]. As such, various triplet sets of band
combinations were formed based on their use in satellite
imagery analysis for both Sentinel-2 and Landsat satellites,
where each band combination serves to emphasise distinct
features, as described in [13]. Table II shows the specific
combinations for our investigations, and Fig. 2 illustrates the
visualization of color composites created from these band
combinations showing different resolutions and compositions
that my not be as intuitive for human observation.

To elaborate, the RGB composite closely mirrors human
vision, making it effective for general analysis, where healthy
vegetation appears green, while unhealthy vegetation looks
brown or yellow. It is particularly useful for analysing water
bodies but often appears low in contrast due to atmospheric
scattering [13]. False Color (Urban) composite, is used for
distinguishing urban areas from vegetation, displaying water
bodies as blue-black and urban areas as grey-purple [13]. The
Color Infrared composite, is used in differentiating vegetation
types and health, showing healthy vegetation in red hues
[12], [13]. The Agriculture composite is used for crop health



assessment, with vibrant greens indicating healthy crops [13].
The Land/Water composite is often used for distinguishing
land from water, useful for highlighting flooded areas [13].
The Natural (Atmospheric Removal) composite provides a
clearer view by reducing atmospheric interference, helping in
agricultural and post-fire analysis [13]. The Shortwave Infrared
composite is useful in vegetation studies, highlighting healthy
vegetation in deep red [13]. Lastly, the Vegetation (VEG)
Analysis composite is effective for soil moisture and vegetation
health analysis, making it suitable for detecting plant vigor and
water bodies [13].

TABLE II: Band combinations

Colour-composite Abbreviation
Sentinel-2 Band

combination (RGB
channel)

RGB Colour RGB 4, 3, 2
False Colour (Urban) FC 12, 11, 4

Colour Infrared IR 8, 4, 3
Agriculture AGRI 11, 8, 3
Land/Water LW 8, 11, 4

Natural (Atmospheric
Removal) NWAR 12, 8, 3

Shortwave Infrared SWIR 12, 8, 4
Vegetation Analysis VEG 11, 8, 4

B. Multi-label Classification

To address the challenge of classifying images with multiple
labels consisting varying object locations, and sizes, we ex-
plore both CNN and ViT backbones for feature extraction and
adopted the Class-Specific Residual Attention (CSRA) module
[8] that enhances spatial attention for each object class for the
task, as shown in Fig. 1.

Particularly, the pipeline begins with an image input into the
backbone, which extracts image features and outputs a feature
tensor of dimensions d × h × w. This tensor is then fed into
a classifier composed of a fully connected layer with a kernel
size of 1 × 1, producing score tensors of shape C × h × w,
where C is the number of classes. These tensors provide class-
specific attention scores for each location within the feature
tensor, representing the probability of each class being present
at specific locations. Residual attention is applied to these
score tensors using either a single-head or multi-head attention
mechanism. Single-head attention computes one set of class-
specific attention scores for the entire tensor, whereas multi-
head attention generates multiple sets of scores, resulting in
various logits combined to form the final prediction..

IV. EXPERIMENTS

In our experiments, we conducted comprehensive evalua-
tions using the BigEarthNet43 dataset [6], consisting 519,284
multispectral images across 43 class labels with diverse en-
vironmental and land-use categories. As the dataset features
significant imbalanced class distributions, we randomly sub-
sampled 118,065 images for our study. Our experimental
setup included a consistent 70/15/15 train-validation-test split,
resulting in 82,645 training images, 17,710 validation images,

and 17,710 testing images, and all images were normalized to
the range [0, 1].

A. Implementation

1) Single Input Triplet Model: The baseline for our ex-
perimentation involves using the single-headed CSRA module
as a classifier, combined with either the CNN (ResNet-101)
or ViT backbones. Two baseline models will be created and
trained with BigEarthNet43 RGB images: one using a Resnet-
101 backbone and the other using the ViT backbone. Both
models were trained for 100 epochs, with a learning rate of
0.01 and a batch size of 16. Furthermore, the Resnet-101-based
model used an input size of 120 × 120, whereas ViT-based
model used 224 × 224 to support a reasonable resolution for
the patch-splitting mechanism. The pipeline of the baseline
model is shown in Fig. 1a.

2) Proposed Model: In our investigation, we aim to explore
two aspects: first, identifying the optimal band combination
that yields the best performance for the BigEarthNet43 image
dataset, and second, examining the impact on performance
when two different color-composite images are input into the
model.

For our first approach, we utilised the same pipeline as in
Fig. 1a, with the Resnet-101 based backbone. For the input,
we used the band combinations listed in Table II to create
eight false colour-composite image. The hyperparameters of
this model will follow that of the Resnet-101 baseline, using
120 × 120 image inputs. For the second approach, we im-
plemented a two-input multi-stream CNN model with feature
map concatenation, using the single-headed CSRA classifier
with both ResNet-101 and VIT backbones. The images for
this model use band combinations (4, 3, 2) and (11, 8, 4),
corresponding to the RGB and Vegetation Analysis colour
composites respectively. The different colour composites are
passed through the backbone separately, and the feature maps
generated are concatenated together by the channel dimension.
Just before being passed to the CSRA classifier, a dropout
layer is used for regularisation. This model will be trained
with 100 epochs, a learning rate of 0.001, a batchsize of 16
and a dropout value of 0.5. Images with dimensions 120×120
and 224×224 are used, respectively for the model trained with
a ResNet-101 backbone and VIT backbone. Fig. 1b shows the
pipeline for the second proposed solution.

B. Evaluation

This section presents an evaluation of both baseline and
proposed approaches. The performance metrics used for the
evaluation are commonly used in multi-label classification
tasks: mean average precision (mAP), overall precision, overall
recall and overall F1 score. For clarity, we indicate each
different models trained with the respective band combinations
based on the convention of {backbone}-{band combination}
in the subsequent results and discussions.

As seen in Table III, the ViT-RGB was able to outperform
Resnet101-RGB across all metrics. ViT-RGB achieved a higher
mAP of 0.5465 compared to 0.4791 for Resnet101-RGB,
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Fig. 2: Visualisation of colour composites created from band combinations in Table II.

suggesting better overall performance in terms of ranking rel-
evant instances higher. Additionally, ViT-RGB showed higher
precision (0.8090), and higher recall (0.6846) which indicates
that more accurate and relevant predictions are being returned.
The F1 Score, was also higher for ViT-RGB (0.7416 vs.
0.7039). These results suggest that the transformer-based ViT
architecture is more effective than the Resnet-101 architecture
when combined with the CSRA module for the classification
of BigEarthNet43 satellite images.

Table III provides detailed evaluation metrics for the pro-
posed solutions. In the single image models, the most no-
table observation is that, band combinations containing bands
SWIR1 or SWIR2 consistently outperform those without those
bands (RGB and IR), with the F1-score being up to 1.250-
2.024% higher when compared to RGB and 1.479-2.255%
higher when compared to IR. The ResNet101-VEG model
achieves the highest performance amongst the single input
models, with an mAP of 0.5162 and the top F1 Score of
0.7242. Furthermore, the ViT-RGB+VEG model demonstrates
superior performance with an F1 Score of 0.7484, however the
Resnet101-RGB+VEG did not demonstrate this same pattern,
with lower scores in all metrics, suggesting that the ViT ar-
chitecture may be better at integrating the diverse information
provided by multiple spectral bands compared to the ResNet-
101 architecture. When comparing the ViT-RGB+VEG model
with ViT-RGB, the former achieved higher scores in all but
the recall metric (0.6790 vs 0.6846). The higher mAP and
precision indicate that the ViT-RGB+VEG model is better at
distinguishing between classes and making accurate classifica-
tions but some true positives might be missed.

The evaluation of F1-scores across various land use classes,

TABLE III: Evaluation results of multi-label classification
with baseline models using RGB bands only, and the proposed
multistream models with RGB+VEG fusion.

Models
Metrics

mAP Precision Recall F1

Score
Resnet101-RGB 0.4791 0.7857 0.6375 0.7039
ViT-RGB 0.5465 0.8090 0.6846 0.7416
Resnet101-FC 0.5101 0.7816 0.6740 0.7238
Resnet101-SWIR 0.5096 0.7829 0.6686 0.7212
Resnet101-NWAR 0.5124 0.7780 0.6674 0.7185
Resnet101-IR 0.5023 0.7661 0.6472 0.7016
Resnet101-LW 0.5074 0.7806 0.6700 0.7210
Resnet101-AGRI 0.5019 0.7751 0.6660 0.7164
Resnet101-VEG 0.5162 0.7849 0.6721 0.7242
Resnet101-RGB+VEG 0.4667 0.7618 0.5885 0.6640
ViT-RGB+VEG 0.5942 0.8335 0.6790 0.7484

as shown in Table IV reveals that the ViT model with
RGB+VEG features outperforms ResNet101 models for many
classes, particularly in classes such as coastal lagoons and
continuous urban fabric. High F1 scores are observed in classes
with high intra-class similarity or high occurrence like ‘sea and
ocean’ (16309 sample images) and ‘coniferous forest’ (42337
sample images), with the ViT model achieving an F1 score
of 0.974 for sea and ocean and 0.869 for coniferous forest.
Conversely, certain classes have lower samples or are relating
to artificial object tend to have lower intra-class similarity,
including airports (183 sample images) and port areas (108
sample images) exhibit notably low or zero scores.

Table V shows sample images and comparison of their
respective ground truth labels with predictions from different
models for three images. For the first image, ViT-RGB+VEG



predicted all labels correctly, while ViT-RGB and Resnet101-
RGB+VEG missing some labels. In the second image, ViT-
RGB+VEG likely confused ‘industrial or commercial unit’
or ‘airport’ with ‘sport and leisure facility’. In the third
image, ViT-RGB+VEG missed the ‘airport’ label but correctly
identified the other classes. The two images with ‘airport’
show very little similarity to each other and are not easily
visible, particularly in the third image indicating a challenge
for models to perform the classification, thus highlights that
classes concerning artificial objects is still a challenge.

In overall, different band combinations are able to boost
the performance of multi-label classification, specifically in
improving the mAP, Recall, and F1-scores irregardless of the
backbone feature extractor. Furthermore, the fusion of these
band combinations also shows good potential at improving
the performance across all metrics, hence, signifying that such
multispectral band combinations and fusion have room for
further investigation to solve a complex task as multi-label
classification of satellite imagery.

V. CONCLUSION

This study has demonstrated the efficacy of utilising multi-
spectral satellite imagery and advanced deep learning tech-
niques for multi-label classification tasks. Our experiments
highlight the importance of band combinations in creating
effective false-color composites for satellite image analysis.
We found that specific band combinations, such as those incor-
porating bands SWIR1 or SWIR2, consistently outperformed
others in terms of F1 score and mAP metrics. We have also
highlighted that the further fusion composite input could help
improve the classification performance of different classes in
multi-label classification.

We believe that future studies could explore advanced
methodologies incorporating such band combination and fu-
sion approach with mechanisms to mitigate class imbalance,
such as leveraging techniques like class weighting by assign
higher weights to minority classes in the loss function. Addi-
tionally, integrating higher-resolution additional spectral bands
could provide richer data for more precise classification and
analysis as well.
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TABLE IV: F1-Scores for land use classes based with respect to the band combinations. [Bold indicates the best band for
the class.]

Class ResNet101 ViT
AGRI FC LW NWAR SWIR VEG IR RGB RGB+VEG RGB RGB+VEG

Mixed forest 0.806 0.803 0.796 0.804 0.801 0.803 0.790 0.766 0.781 0.810 0.821
Non-irrigated arable land 0.793 0.804 0.816 0.796 0.811 0.817 0.784 0.777 0.729 0.827 0.826
Broad-leaved forest 0.715 0.720 0.718 0.711 0.715 0.725 0.678 0.679 0.667 0.724 0.740
Complex cultivation patterns 0.587 0.622 0.616 0.607 0.622 0.611 0.558 0.615 0.519 0.662 0.655
Water bodies 0.818 0.829 0.820 0.807 0.825 0.826 0.803 0.788 0.789 0.834 0.846
Discontinuous urban fabric 0.665 0.704 0.690 0.702 0.702 0.700 0.702 0.705 0.688 0.748 0.755
Peatbogs 0.551 0.572 0.608 0.538 0.567 0.572 0.578 0.548 0.497 0.594 0.587
Industrial or commercial units 0.438 0.482 0.439 0.480 0.462 0.466 0.505 0.504 0.443 0.506 0.523
Olive groves 0.393 0.265 0.183 0.252 0.294 0.282 0.244 0.319 0.026 0.296 0.352
Continuous urban fabric 0.327 0.462 0.493 0.359 0.395 0.404 0.350 0.494 0.116 0.617 0.669
Vineyards 0.144 0.172 0.267 0.242 0.193 0.185 0.247 0.339 0.073 0.253 0.283
Inland marshes 0.170 0.152 0.185 0.158 0.161 0.179 0.142 0.063 0.087 0.056 0.066
Sport and leisure facilities 0.122 0.098 0.202 0.074 0.086 0.167 0.133 0.025 0.158 0.087 0.134
Mineral extraction sites 0.305 0.323 0.357 0.295 0.333 0.299 0.145 0.232 0.272 0.240 0.268
Road and rail networks 0.151 0.256 0.233 0.234 0.215 0.234 0.105 0.073 0.172 0.108 0.172
Green urban areas 0.031 0.116 0.031 0.169 0.087 0.032 0.085 0.062 0.000 0.000 0.149
Sparsely vegetated areas 0.078 0.172 0.167 0.083 0.151 0.157 0.080 0.172 0.043 0.218 0.255
Coastal lagoons 0.549 0.343 0.371 0.568 0.435 0.519 0.480 0.611 0.600 0.750 0.711
Estuaries 0.280 0.213 0.226 0.292 0.182 0.200 0.379 0.438 0.133 0.353 0.429
Airports 0.000 0.000 0.059 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Port areas 0.000 0.000 0.000 0.000 0.118 0.000 0.000 0.000 0.000 0.000 0.000
Burnt areas 0.000 0.182 0.000 0.182 0.182 0.000 0.000 0.000 0.000 0.000 0.000
Coniferous forest 0.852 0.856 0.852 0.860 0.855 0.859 0.839 0.842 0.806 0.857 0.869
Transitional woodland 0.616 0.620 0.605 0.598 0.604 0.610 0.623 0.605 0.568 0.625 0.614
LPA-ANV1 0.565 0.573 0.569 0.570 0.584 0.558 0.484 0.544 0.350 0.625 0.613
Pastures 0.713 0.722 0.729 0.709 0.714 0.718 0.704 0.708 0.670 0.721 0.723
Sea and ocean 0.938 0.930 0.928 0.944 0.924 0.925 0.937 0.946 0.928 0.970 0.974
Agro-forestry areas 0.739 0.750 0.749 0.738 0.740 0.747 0.751 0.732 0.736 0.771 0.791
Permanently irrigated land 0.504 0.480 0.547 0.504 0.474 0.541 0.535 0.478 0.309 0.545 0.565
Natural grassland 0.424 0.456 0.431 0.372 0.419 0.438 0.390 0.467 0.327 0.432 0.447
Sclerophyllous vegetation 0.441 0.426 0.380 0.390 0.458 0.458 0.341 0.380 0.070 0.540 0.576
Water courses 0.698 0.714 0.680 0.721 0.696 0.693 0.662 0.584 0.668 0.602 0.721
Annual permanent crops 0.405 0.368 0.375 0.386 0.401 0.380 0.348 0.428 0.000 0.420 0.399
Moors and heathlands 0.341 0.273 0.278 0.310 0.304 0.276 0.271 0.316 0.141 0.306 0.287
Fruit trees and berry plantations 0.126 0.048 0.025 0.134 0.036 0.061 0.085 0.188 0.000 0.161 0.153
Rice fields 0.262 0.389 0.365 0.372 0.414 0.382 0.422 0.413 0.264 0.327 0.369
Bare rock 0.417 0.578 0.421 0.423 0.522 0.489 0.444 0.535 0.385 0.388 0.521
Beaches, dunes, sands 0.611 0.642 0.582 0.617 0.585 0.634 0.629 0.641 0.620 0.629 0.640
Salt marshes 0.274 0.194 0.242 0.310 0.187 0.232 0.257 0.282 0.000 0.190 0.358
Construction sites 0.000 0.000 0.000 0.000 0.000 0.000 0.069 0.000 0.000 0.000 0.000
Intertidal flats 0.154 0.217 0.318 0.195 0.208 0.238 0.150 0.267 0.273 0.341 0.381
Dump sites 0.061 0.063 0.000 0.057 0.059 0.000 0.000 0.000 0.000 0.000 0.063
Salines 0.435 0.560 0.667 0.500 0.615 0.615 0.667 0.417 0.105 0.286 0.714
1 Land principally occupied by agriculture, with significant areas of natural vegetation.

TABLE V: Sample predictions. [Blue: correct predictions; Red: Incorrect predictions.]

Image Groundtruth ViT-RGB ViT-RGB+VEG Resnet101-RGB+VEG

Coniferous forest, Mixed
forest, Sea and ocean Mixed forest Coniferous forest, Mixed

forest, Sea and ocean
Coniferous forest, Mixed

forest

Industrial or commercial
units, Airports,

Non-irrigated arable land,
Pastures

Pastures
Non-irrigated arable land,

Sport and leisure
facilities, Pastures

Non-irrigated arable land,
Pastures

Airports, Coniferous
forest, Mixed forest,

Transitional
woodland/shrub

Coniferous forest, Land
principally occupied by

agriculture, with
significant areas of
natural vegetation

Coniferous forest, Mixed
forest, Transitional

woodland/shrub

Mixed forest,
broad-leaved forest,

Transitional
woodland/shrub


