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Abstract—This study focuses on building effective spoofing
countermeasures (CMs) for non-native speech, specifically tar-
geting Indonesian and Thai speakers. We constructed a dataset
comprising both native and non-native speech to facilitate our
research. Three key features—MFCC, LFCC, and CQCC—were
extracted from the speech data, and three classic machine
learning-based classifiers—CatBoost, XGBoost, and GMM—were
employed to develop robust spoofing detection systems using
the native and combined (native and non-native) speech data.
This resulted in two types of CMs: Native and Combined. The
performance of these CMs was evaluated on both native and non-
native speech datasets. Our findings reveal significant challenges
faced by Native CM in handling non-native speech, highlighting
the necessity for domain-specific solutions. The proposed method
shows improved detection capabilities, demonstrating the impor-
tance of incorporating non-native speech data into the training
process. This work lays the foundation for more effective spoofing
detection systems in diverse linguistic contexts.

I. INTRODUCTION

Over the past few years, voice-based authentication sys-
tems have become prominent for verifying identities and
recognizing spoken utterances, offering convenience in various
scenarios. However, they are vulnerable to spoofing attacks,
particularly through logical access (LA) scenarios [1] involving
Text-to-Speech (TTS) and Voice Conversion (VC). TTS gen-
erates natural-sounding artificial speech from text, while VC
converts one speaker’s voice to another’s [2]. These techniques
can create highly realistic speech, posing significant threats to
the security and reliability of these systems.

The latest ASVSpoof 5 challenge [3] has demonstrated new
surrogate detection models with adversarial attacks incorpo-
rated for the first time, using non-studio quality recordings
that introduced a new challenge in the dataset. They built end-
to-end systems using RawNet2 [4] and AASIST [5].

While much research has focused on spoofing detection
in English and other languages [6], [7], there is a notable
gap in studies addressing specific linguistic contexts, such
as the diverse languages within the Asian region. English-
speaking accents in Asian countries present unique challenges,
as non-native accents make it difficult for spoofing detection
systems to accurately differentiate between bonafide (genuine)
and spoof speech.

This study focuses on Indonesia and Thailand due to In-
donesia’s large multicultural population and Thailand’s unique
dialect variability and tonal representation. Given the lack of
publicly available datasets for these linguistic contexts, we
developed an audio dataset with speech from Indonesian and

Thai non-native English speakers. Our goal is to establish a
spoofing countermeasure (CM) to effectively detect TTS and
VC attacks for non-native speech accents and patterns.

The contribution of our work is summarized as follows:
• to facilitate the development of CMs to handle non-native

speech by creating a dataset with non-native speech,
addressing the gap in available speech datasets comprising
non-native accents and characteristics,

• to understand the effectiveness on Native CMs in handling
Asian non-native speech, and

• to propose CMs that can distinguish bonafide and spoof
speech for both natives and non-natives.

In this study, we created a comprehensive dataset consisting
of English native and Indonesian-Thai non-native speech to
construct the CMs. Furthermore, we investigated how the CMs
performed in distinguishing bonafide and spoof speech for
both native and non-native speakers. Our findings show that
the proposed method significantly improved CM performance
in handling non-native speech. Additionally, our CMs utilize
common front-end features and back-end classic machine
learning (ML)-based classifiers, establishing a foundational
baseline for this non-native speech study.

II. RELATED WORKS

In response to the growing threat of spoofing, the research
community launched the ASVspoof challenges1, a biennial
initiative aimed at developing CMs to detect fake speech,
starting in 2015 [8] and continuing through 2024 [3]. As these
types of attacks have increased through the challenge editions,
TTS and VC attacks have been included since the first edition
in 2015.

Several CM systems have been developed to detect audio
spoofing, primarily focusing on hand-crafted features that can
effectively capture discriminative patterns of artifacts [9]. Early
research mainly used conventional classifiers, such as ML-
based classifiers.

A study on synthetic speech detection in 2015 found that
dynamic LFCC with a GMM classifier performed best on
ASVspoof evaluation sets [10]. In ASVspoof 2017 [11], the
best system in the previous challenge was used as the baseline
system. It was built using a common GMM back-end classifier
with constant Q cepstral coefficients (CQCC). In ASVspoof
2019 [1], the top-performing systems employed LFCC features

1https://www.asvspoof.org/



with a light convolutional neural network (LCNN). However,
other systems based on standard cepstral features and GMM-
based classifiers were only slightly behind in performance. In
ASVspoof 2021 [12], most systems operated using short-term
spectral features or raw waveforms, utilizing ensemble systems
and popular convolutional networks. These efforts primarily
addressed spoofing in native language domains, leaving the
non-native speech domain largely unexplored.

Speech corpora are essential for CM systems, and publicly
available datasets with a large number of spoofing attacks
have emerged to overcome data bottlenecks. These datasets,
which include both bonafide and spoof speech generated by
LA algorithms (TTS and/or VC), facilitate the evaluation and
benchmarking of different systems. Notable datasets include
ASVspoof2015 [8], ASVspoof2019-LA [13], ASVspoof2021-
LA [12], and the latest ASVspoof2024 [3]. Other available
datasets include WaveFake [14], ADD2022-LF [7], and Latin-
American Voice Anti-spoofing [6]. However, datasets repre-
senting non-native English speech are scarce, highlighting the
need for research focused on spoofing detection tailored to
non-native accents.

III. DATASET COLLECTION

The dataset used in this study consists of English native and
non-native speech, spoken by Indonesian and Thai speakers.
The dataset is split into training, validation, and testing sets
with the ratio of 70-10-20 to ensure robust evaluation, with no
overlap of speakers between the splits to maintain the integrity
of the results. Table I summarizes our ENIT Dataset2.

A. Bonafide Data

Our native English dataset consists of 7,990 utterances
sourced from the training sets of ASVspoof 5 [3], which is
derived from the English-language subset of the Multilingual
Librispeech (MLS) dataset. The MLS dataset is a large mul-
tilingual corpus based on LibriVox audiobooks [15], featuring
non-studio-quality recordings. This dataset includes recordings
from over 4,000 speakers using various devices. As this dataset
has a balanced number of speakers, we randomly selected
4,000 utterances from the total of 80 males and 80 females
speakers and eliminated 10 utterances randomly to ensure the
balance with our non-native English dataset.

The English non-native speech dataset consisted of 7,990
utterances recorded from 21 speakers, including 10 Indonesian
speakers (7 males and 3 females) and 11 Thai speakers (7
males and 4 females). These speakers read articles sourced
from online English newsletters covering unbiased topics such
as health, astronomy, engineering, and technology. We selected
similar news topics in Indonesian, English, and Thai, ensuring
they did not express hate speech, violence, or harassment to
maintain impartiality. Each news article was then segmented
into sentences or sub-sentences with 5 to 20 words per
utterance to ensure readability.

2ENIT Dataset: English Native and Indonesian-Thai Non-Native Speech

TABLE I
ENIT DATASET: ENGLISH NATIVE AND INDONESIAN-THAI

NON-NATIVE SPEECH

Type Sets # unique spk. # utterances # spoof

Male Female Bonafide Spoof attack

Native
Train. 56 56 5,590 33,540 8
Dev. 8 8 800 4,800 8
Eval. 16 16 1,600 9,600 8

Non-
native

Train. 10 / 12 4 / 5 5,696 33,164 3
Dev. 1 / 1 1 / 2 542 4,275 3
Eval. 3 / 3 2 / 3 1,752 10,501 3

The recordings were conducted in a soundproof room using
four different recording devices: a condenser microphone, a
dynamic microphone, a mobile phone, and a laptop computer,
without significant channel or background noise effects. All
speech was recorded in a read style, with the speaking pace
adjusted to each speaker, while still maintaining the natural-
ness of spontaneous speech. Audio post-processing included
practical trim voice editing using Audacity3 to separate the
recordings by utterances.

B. Spoof Data

We constructed a corpus of 47,940 utterances by selecting
a subset from the ASVspoof 5 training data [3]. The selected
utterances are from the same 80 males and 80 females speakers
used in the bonafide data. The number of spoof utterances
is six times larger than the number of bonafide utterances.
Table I specifies the number of unique speakers of bonafide
and spoof speech on the left and right side of the separator ‘/’,
respectively. If the number of speakers is the same for both
bonafide and spoof speech, we do not use the separator.

To generate spoof data for non-native English speech, we
employed TTS, VC, and synthesis techniques. These methods
can be broadly categorized into three distinct approaches.

1) SpeechT5 [16]: SpeechT5 is a model that unifies speech
and text processing under a single framework. Inspired by the
success of T5 in the text domain [17], SpeechT5 employs an
encoder-decoder architecture to learn shared representations
for both modalities. It incorporates specialized pre- and post-
processing networks to handle the unique characteristics of
speech and text, respectively.

Through extensive self-supervised pre-training on large-
scale unlabeled speech and text data, SpeechT5 acquires a deep
understanding of both modalities. This versatility empowers it
to excel in a wide range of tasks, including automatic speech
recognition, speech synthesis, speech translation, VC, speech
enhancement, and speaker identification.

Approximately 5,200 synthetic utterances were generated
using the SpeechT5 model and x-vector speaker embeddings
[18]. To manipulate acoustic and linguistic characteristics,
we varied both x-vector and bottleneck features (representing
linguistic information). Roughly 2,000 utterances were created

3Audacity (ver. 3.4.2) is an open source software for recording and editing
sounds.
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Fig. 1. Block diagrams of our proposed method for building spoofing CMs

using x-vector and bottleneck features extracted from our
collected bonafide non-native speaker data. In another set of
1,000 utterances, x-vectors from native speakers in the CMU
ARCTIC dataset [19] were combined with bottleneck features
from our non-native speakers. The remaining utterances were
synthesized by pairing x-vectors from our non-native speakers
with bottleneck features from the VCTK dataset [20].

2) FreeVC [21]: We utilized FreeVC, a text-free VC system
capable of transforming a speaker’s voice with only a single
reference audio sample. The model builds upon the ViTS archi-
tecture [22] but departs from traditional text-based approaches
by learning to disentangle content information directly from
raw audio waveforms. FreeVC extracts speaker-independent
features that are subsequently processed through a bottleneck
layer to isolate content representations using WavLM [23]. To
further enhance the model’s ability to separate content from
speaker identity, spectrogram resizing is employed as a data
augmentation technique.

Central to the one-shot conversion capability is a speaker en-
coder that extracts speaker-specific characteristics. We experi-
ment with two configurations of the speaker encoder: FreeVC-
s, which utilizes a non-pretrained encoder, and FreeVC, which
benefits from a pre-trained encoder. This comparative analysis
allows us to assess the impact of pre-training on the overall
performance of the VC system.

3) WORLD [24]: We also employed the WORLD, a
vocoder-based speech synthesis system, to generate synthetic
spoof data. This system is widely recognized for its exceptional
performance in speech analysis, manipulation, and synthesis. It
analyzes speech into three parts: fundamental frequency (F0),
aperiodicity, and spectral envelope.

To further refine the spectral envelope estimation process,
we integrated the CheapTrick algorithm [25] into our pipeline.

This method leverages F0-adaptive windowing to enhance
spectral resolution. By smoothing the power spectrum and
applying spectral recovery techniques in the quefrency domain,
CheapTrick better estimates the spectral envelope. This im-
proved accuracy contributes significantly to the overall quality
of the synthesized speech. We manipulated speed and F0 with
random parameters during the speech synthesis process. This
randomization helps to create a more diverse and challenging
dataset for subsequent anti-spoofing models.

IV. PROPOSED METHOD

A block diagram of our proposed method in building the
spoofing CMs using our datasets is shown in Figure 1. To
establish a foundation for our newly developed dataset, which
represents the characteristics of non-native speech, we em-
ployed hand-crafted features and classic ML-based classifiers.

A. Feature extraction

The front-end features are mostly derived from the mag-
nitude or power spectrum, encompassing both short-term and
long-term magnitude spectral features [9], to effectively cap-
ture the essential characteristics of speech signals, including
formant structures and energy distribution across different
frequency bands. These features are typically obtained from
MFCC [26], LFCC [27], and CQCC [28].

LFCC is widely used in speaker recognition and has demon-
strated strong performance in spoofing detection. MFCC has
been extensively explored for accent classification tasks, which
closely relate to this study on non-native speech. CQCC has
also proven effective in detecting audio spoofing by providing
higher frequency resolution at lower frequencies and higher
temporal resolution at higher frequencies. This study aims
to investigate the effectiveness of LFCC, MFCC, and CQCC
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in detecting spoofing attacks in non-native English speech,
focusing on Indonesian and Thai accented speakers.

B. Classifiers

We use classic ML-based classifiers to build the baseline
spoofing CMs. To determine the most effective classifier, we
conducted model selection on several widely used ML-based
classifiers and evaluated their performance on our development
sets. On the basis of our experiments, we identified the two
best classifiers for the features used (MFCC, LFCC, CQCC):
CatBoost [29] and XGBoost [30].

CatBoost is a type of binary decision trees-based gradient-
boosting predictor that has proven effective in dealing with
categorical data [31]. Categorical data consists of distinct
values that cannot be compared directly. In this study, we deal
with binary categorical data.

Extreme Gradient Boosting, or XGBoost, is a gradient-
boosted tree algorithm for supervised learning. Gradient-
boosted decision trees excel in learning from noisy data and
have achieved cutting-edge results. XGBoost is a gradient-
boosting implementation that optimizes computing perfor-
mance to provide a scalable solution.

Additionally, we included the GMM-based classifier as
our baseline, which has been a fundamental method in the
ASVspoof challenge series. GMM assumes that data points
belong to a mixture of a finite Gaussian distribution [32]. It
is commonly used in anti-spoofing systems. There, separate
GMMs are learned for each bonafide and spoof dataset. The
classification of new input is predicted by calculating the
ratio of its log-likelihood of belonging to bonafide and spoof
GMMs.

V. EXPERIMENTAL SETTINGS

As the currently available speech corpora primarily consist
of native speech, we aim to assess the performance of CMs
built upon these datasets in handling non-native speech. We
refer to this CM as Native CM. Subsequently, we developed a
spoofing CM specifically for non-native speech by combining
the current publicly available datasets, which are predomi-
nantly native speech, with our non-native datasets. We refer
to this CM as Combined CM. Our experiment pipeline is
illustrated in Fig. 1.

A. Experiment 1: Assessing the Native CM on Non-Native
Speech

First, we built the Native CM by training our selected mod-
els (GMM, CatBoost, and XGBoost) using the extracted fea-
tures (MFCC, LFCC, and CQCC) on the native speech training
sets. The features were extracted using the Matlab toolbox
and Smileslab implementations [33]. We set the random seed
to 42 for all classifiers and adjusted the hyperparameters as
detailed in Subsection V-C. Each model was then evaluated
on both native and non-native speech evaluation sets, using
the specified evaluation metrics. This initial assessment on
native speech helps us understand the model’s performance
in a typical native speech context.

TABLE II
CMS PERFORMANCE EVALUATION RESULT IN EXPERIMENTS 1 AND 2

Exp. Feat. Classifier Non-native Native
minDCF EER (%) minDCF EER (%)

1

MFCC
CatBoost 0.81 41.54 0.17 6.88
XGBoost 0.83 42.58 0.18 7.48

GMM 1.00 100 1.00 100

LFCC
CatBoost 0.95 40.07 0.24 10.19
XGBoost 0.98 40.36 0.26 10.56

GMM 1.00 62.84 0.83 33.89

CQCC
CatBoost 0.84 38.11 0.29 12.43
XGBoost 0.79 35.57 0.28 12.56

GMM 1.00 76.02 0.97 47.69

2

MFCC
CatBoost 0.33 12.66 0.19 7.81
XGBoost 0.38 13.98 0.21 8.08

GMM 0.96 46.58 1.00 46.18

LFCC
CatBoost 0.27 10.90 0.31 13.32
XGBoost 0.25 10.34 0.33 13.76

GMM 0.98 53.31 1.00 46.13

CQCC
CatBoost 0.19 8.56 0.37 15.06
XGBoost 0.21 9.63 0.36 14.75

GMM 0.97 41.55 0.99 91.89

B. Experiment 2: Assessing the Combined CM on Non-Native
Speech

With regard to the Combined CM, we trained our selected
models (GMM, CatBoost, and XGBoost) using the extracted
features (MFCC, LFCC, and CQCC) on the combined native
and non-native speech training sets. We set the same hyper-
parameter tuning as experiment 1 to ensure fair comparison.
We also used the same evaluation protocol to facilitate the
common assessment and benchmarking of both CMs.

C. Hyperparameter settings

We set different hyperparameters for each classifier on the
basis of its architecture as implemented in the scikit-learn
library [32]. For the GMM classifier, we used two mixture
components, a full covariance type, the k-means method for
initializing the weights, and a maximum of 100 iterations. For
CatBoost, we set the verbose parameter to 0. For XGBoost,
we used logarithmic loss as the evaluation metric. All other
hyperparameters were kept at their default configurations.

D. Evaluation Metrics

In this study, we used minimum detection cost function
(minDCF) and equal error rate (EER) adopted from the latest
ASVspoof 5 challenge, specifically on track 1: stand-alone
spoofing and speech deepfake detection [3]. The spoofing de-
tection employed in the challenge is built upon the normalized
detection cost function (DCF), defined as follows:

DCF′(τcm) = β · Pcm, miss(τcm) + Pcm, fa(τcm) (1)

where

β =
Cmiss · (1− πspf)

Cfa · πspf
(2)

In Eq. (1), Pcm, miss(τcm) and Pcm, fa(τcm) are the empirical
miss rate for bonafide utterances and false alarms for spoof
utterances, respectively. Both are regarded as a function of the
detection threshold τcm. The constant β In Eq. (2) is calculated
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using miss rate cost Cmiss, false alarm cost Cfa, and detection
threshold τcm with the values set as follows: Cmiss = 1, Cfa =
10, and πspf = 0.05. Therefore, the value of β is approximately
1.90.

Furthermore, Eqs. (1) and (2) are used to compute the min-
imum DCF (minDCF), which measures the CMs performance
by using the threshold set on the basis of ground-truth where
the lower value indicates a better performance. This metric is
calculated as follows:

minDCF = min
τcm

DCF′(τcm) (3)

The final evaluation metric used is the EER, one of most
widely used metrics for audio spoofing CMs. It represents the
CM threshold where the false acceptance rate equals the false
rejection rate. A lower EER value signifies better performance.

VI. RESULTS

As seen in Table II, the GMM classifier has comparably
high minDCF and EER values on the native speech evaluation
sets. It also reached the maximum possible DCF and EER
values of 100% on MFCC features, indicating extremely
poor performance as it is entirely ineffective at distinguishing
between bonafide and spoof speech in both non-native and
native contexts. The lowest EER for the GMM classifier was
achieved with LFCC features, which is expected as this system
is considered the baseline in the ASVspoof challenge.

While the CatBoost and XGBoost classifiers achieved com-
petitive results on native datasets, they still obtained minDCF
values greater than 0.79 and EER values higher than 38% on
non-native datasets. All the CMs in experiment 1 on average
declined around 0.44 in minDCF and 19% in EER relative
to their performance on native datasets. These results indicate
a significant lack of non-native speech handling capability in
Native CMs, demonstrating the inefficacy of the pre-existing
speech spoofing CMs in distinguishing between bonafide and
spoof speech in non-native contexts.

In experiment 2, all Combined CMs significantly improved
when predicting the non-native datasets, with an average rela-
tive improvement of around 0.41 in minDCF and around 30%
in EER. However, this experimental setting slightly worsened
the CMs’ ability to detect native speech, as indicated by an
average of total increase on minDCF and EER around 0.06 and
1.7%, respectively. This behavior may be due to the increased
variability introduced by the non-native speech data within the
training sets, making it more challenging for the model to
generalize well to the specific characteristics of native speech
alone, as it now has to account for a broader range of speech
patterns.

Among all the CMs we built, CQCC feature extraction with
CatBoost classifier performed the best when evaluated on non-
native datasets. These ensemble models tended to perform
better due to their boosting algorithm, which iteratively builds
an ensemble by training each new model to correct the errors
of the previous ones.

Meanwhile, the GMM classifier, which is often used as
a baseline model, performed worse than other classifiers. In
most cases, the GMM classifier predicted the input speech
as a spoof. Despite reducing EER by up to 50% after being
trained using the combined native and non-native datasets, its
performance as a CM is not satisfactory.

VII. CONCLUSIONS

In this study, we constructed spoofing countermeasures
(CMs) to handle non-native speech using different acoustic
features (MFCC, LFCC, and CQCC) and classic machine
learning-based classifiers (CatBoost, XGBoost, and GMM).
We also developed the ENIT dataset, which includes speech
from Indonesian and Thai non-native English speakers. We
conducted two experiments to assess the current CMs (Native
CM) in handling non-native speech, as well as the baseline we
constructed (Combined CM).

Our findings show that the Combined CMs is better at
detecting bonafide and spoof non-native speech than the Native
CMs, improving minDCF and EER scores around 0.41 and
30% on average, respectively. Moreover, we also found that
CatBoost and XGBoost obtained competitive results using
all three features, while GMM performed the worst in all
experiments. In our future work, we will expand the datasets
to be able to capture more non-native speech from the Asian
region, as well as building more accurate and robust CMs
focusing on accent and other speech characteristics.
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