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Abstract—The paper introduces a novel deep-learning model
for enhancing 3D object detection in autonomous vehicles tailored
to Vietnamese traffic conditions. The model improves efficiency
by computing features only for relevant voxels, reducing compu-
tational costs and accelerating convergence through direct point
cloud transformations. To address the limitations of the KITTI 3D
dataset, a new proprietary dataset was created using Lidar16 and
Lidar32 sensors, capturing specific Vietnamese traffic conditions.
Experimental results on both the KITTI 3D and Phenikaa-
X datasets show promising improvements in object detection
performance, advancing techniques in 3D object detection and
enhancing safety and reliability in diverse traffic environments.

I. INTRODUCTION

In autonomous driving, 3D objects refer to entities detected
and classified within three-dimensional space. These objects
include vehicles, pedestrians, and static objects. Detecting and
classifying these objects is crucial for the autonomous driving
system to comprehend its surroundings and facilitate safe
decision-making.

The computer vision approach for 3D object detection is
mainly based on analyzing the image data resource or the
characteristics of the image data. Various types of camera
sensors usually capture image data. It comprises 2D images
acquired from monocular cameras or 2D images with depth
information obtained from stereo cameras. For image data in
the form of 2D, the 3D object detection approaches analyze
2D images and then infer 3D information about objects [1][2].
Generally, the approach based solely on image data yields
promising results but is constrained by the absence of depth
information. Despite advancements in in-depth recovery from
images, it remains an inherently unstable inverse problem.
Variations in the 3D pose of the same object can result in
distinct visual appearances on the image plane, complicating
representation learning. Additionally, cameras are passive sen-
sors, so images are susceptible to environmental factors such as
varying lighting conditions (e.g., nighttime) or adverse weather
like rain.

Point cloud data is gathered from 3D sensors like Lidar,
capturing detailed 3D information about objects [3][4][5][6].

Point cloud data represents the surrounding 3D environment
as a set of points, each with specific positional information
in 3D space. This data aids in precisely determining the
object’s location in 3D space without additional transfor-
mations. However, detecting 3D objects from point clouds
remains challenging due to several factors. Point clouds are
often sparse, irregular, and unordered. Additionally, they may
contain missing points or suffer from self-occlusion, further
complicating accurate object detection data from images and
point clouds are collected simultaneously from camera sen-
sors and Lidar, providing comprehensive object characteristics
(such as color) and precise object positions in 3D space based
on point cloud information.

Processing combined data can help alleviate the limitations
of each image data type [7]. However, establishing corre-
spondence between the point cloud and the pixels presents
a challenging problem that requires resolution. Thus, the
prominent research direction receiving significant attention is
enhancing point clouds-based approaches. One direction is
representing the point cloud using voxels [8][9], which can
improve resolution and accuracy but at the cost of increased
computational complexity and memory usage. Another direc-
tion involves representing the point cloud as a point set, which
can improve algorithm performance but add complexity to
machine learning algorithms.

This paper researches and develops a 3D object detection
method based on Lidar information. In more detail, we use an
advanced fusion technique, which operates at the point level,
and then develop a sophisticated sparse convolutional detec-
tion framework to enhance the performance of 3D detection
in autonomous. The proposed approach improves detection
performance, reduces computational complexity and inference
latency, and offers a more efficient and reliable solution for
autonomous driving applications. In addition in this paper,
we also propose to enhance the KITTI 3D published dataset
by overcoming its restricting 180-degree viewing angle and
labeling the front portion within the camera’s field of view to
a comprehensive 360◦ view of the surrounding objects.



The rest of this paper is organized as follows: Section II
provides a comprehensive review of related work and com-
bined data from multiple sensors. Section III describes our
proposed hybrid approach, including the detailed architecture
and fusion technique employed to integrate LiDAR and camera
data effectively. Section IV outlines the experimental setup
and obtained results showcasing our method’s performance im-
provements and advantages compared to baseline approaches.
Finally, Section V concludes the paper with a summary of our
contributions and critical outcomes.

II. DEEP LEARNING APPROACHES IN 3D OBJECT
DETECTION FOR AUTONOMOUS DRIVING

Over the past decade, we have witnessed significant ad-
vancements in 3D object recognition techniques, particularly
those based on monochrome or dual-camera images [10],
[11]. However, detecting 3D objects from monochrome images
remains challenging, primarily due to the limited depth infor-
mation available from a single image. Various methods, such as
depth inference from images, leveraging geometric constraints,
and shape assumption, have been proposed to tackle this issue,
but they only offer partial solutions. One promising direction
is a regression of 3D box parameters from images using a
convolutional neural network (CNN). This approach, whether
it focuses on predicting all 3D box parameters at once or
initially predicts 2D boxes and then upgrades them to 3D
boxes, holds the potential in 3D object detection.

3D object detection based on dual cameras is perspective
direction since it uses two cameras positioned at a distance
from each other to capture the same scene. While dual camera-
based algorithms benefit from using geometric constraints to
infer depth information, they also face limitations due to the
need for precise calibration and synchronization.

Multi-view 3D detection is a direction that utilizes multiple
cameras to capture the same scene from different angles. These
images are then projected into a unified Bird’s Eye View
(BEV) space for processing by a BEV-based detector[12], [13].
The advantage of multi-view 3D detection is that it provides
better detection than approaches relying on a single or dual
camera, as multiple camera views offer more information about
objects in the scene. However, multi-view 3D detection faces
challenges in accurately transforming between camera views
and BEV space without precise depth information, leading to
misalignment between image pixels and their BEV positions.
In addition, collecting and processing image data from multiple
cameras can be costly and complex.

Unlike images, where pixels are evenly distributed on a
plane, point clouds represent a sparse and irregular 3D data
structure. Researchers have developed numerous 3D object
detection models to explore pixel-level information based on
point cloud data collected. The authors in Lidar [14],[15]
proposed a method that uses a voxel grid to divide the point
cloud into small cells, allowing for more efficient feature
extraction.

Point-based 3D object detection relies on deep learning
networks to detect objects within point clouds [16]–[18].

These methods, adapted from deep learning techniques used
for images, involve two primary components: point cloud
sampling and feature learning. Point cloud sampling, a critical
step, involves selecting a subset of points from the original
cloud using random, weighted, and structural sampling meth-
ods. This process proposes to reduce data size and enhance
learning efficiency. Feature learning, the second component,
entails extracting features from sampled points using point
cloud operators. These features are then utilized for object
classification within the point cloud.

To facilitate feature extraction, mesh-based 3D object de-
tection involves converting point clouds into discrete grid
representations, such as voxels, pillars, or top-view (BEV)
maps [19]. Then, a deep learning model extracts features from
these meshes. The methods in this direction involve two key
components: grid-based representation and grid-based neural
networks. Grid-based representation converts the point cloud
into a discrete grid by dividing 3D space into small cells.
Grid-based neural networks process these grid representations
effectively in 3D space. Generally, mesh-based 3D object
detection outperforms point-based approaches.

3D object detection using a combination of point and voxel
data involves a hybrid architecture with two main frameworks:
the one-stage and the two-stage. The one-stage framework
directly processes the point cloud using points and voxels.
Points are utilized for local feature extraction, while voxels
contribute to global feature extraction. These extracted features
are then employed for object detection within the point cloud.
The two-stage framework operates in two distinct steps: the
first one employs point- or grid-based methods for feature
extraction, and the second one utilizes voxel-based methods
specifically for object detection.

Another direction in 3D object detection involves integrating
information from cameras and Lidar sensors, known as Early-
Fusion-based 3D object detection [20]. Cameras can extract
semantic features with color information, while Lidar excels
in 3D positioning and structural information. The early fusion-
based 3D object detection approach initiates with a 2D detec-
tion or segmentation network that extracts information from
the image. This information is then transmitted to the Lidar
point cloud. Depending on the approach to information fusion,
early fusion-based 3D object detection methods are classified
into region-level knowledge fusion and point-level knowledge
fusion. Region-level knowledge fusion utilizes image-derived
information to localize regions in the Lidar point cloud likely
to contain objects. Point-level fusion methods enhance points
in the Lidar point cloud using semantic features extracted
from images. While Early-Fusion-based 3D object detection
approaches show promise, they have the drawback of increased
computational costs and inference time latency.

Late-Fusion-based 3D object detection approaches [16],
[21], [22] leverage outputs from separate Lidar-based and
camera-based object detectors. The Lidar detector provides 3D
spatial information (position and size), while the camera de-
tector contributes shape and color information. These methods
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often have good results by capitalizing on the strengths of both
approaches. However, the challenges are in fully integrating
semantic information from both modalities, which can lead to
inaccurate detection outcomes in specific scenarios.

III. PROPOSED APPROACHES FOR 3D OBJECT DETECTION

This section explores the Sparse Convolutional Detection
(SECOND) model, incorporating enhancement to conventional
convolutional network architectures. One of the paper’s con-
tributions is adopting spatially sparse convolutional networks,
which compute features only for voxels containing points,
significantly reducing computational costs in the SECOND
model. In addition, another contribution to adapting a dataset
that can adjust to Vietnamese conditions traffic is presented in
this section.

A. Enhanced Sparse Convolutional Detection Model

The architecture of the SECOND Network comprises the
following components: Point Cloud, Voxel Feature Extractor,
Sparse Convolution Layers, and Region Proposal Network
(RPN). Point cloud grouping organizes point cloud data into
coordinate tables, encoding voxel positions and actual point
cloud data. The voxel feature extractor converts raw point
clouds into voxel features, a crucial step in the process. Voxels,
3D cells that divide space into grids, are the backbone of
the SECOND Network, which employs two Voxel Feature
Extractor (VFE) layers to extract features from point clouds
within voxels and encode them into voxel representations [14].
The sparse convolution layers, designed to operate on pre-
dominantly empty or sparse data spaces, such as those found
in point cloud datasets, are the workhorses of the Network,
extracting higher-level features from voxel representations,
aiding in object identification within the point cloud. The
region proposal network (RPN) generates bounding boxes
around potential objects within the point cloud, a practical
application of the Network’s capabilities. These bounding
boxes are subsequently utilized for object classification and
localization, further demonstrating the real-world relevance of
the SECOND Network.

In SECOND network architecture, computing sparse con-
volutions for feature extraction has significant challenges.
In [23], the author uses regular sparse convolution and subarray
sparse convolution (SSCN) for feature extraction. However,
this approach has a limitation: it overlooks feature extraction
from surrounding data and focuses only on activated inputs
to produce activated outputs. Recognizing this, the paper [24]
proposes a solution by modifying the model backbone. This
modification involves integrating more targeted sparse con-
volution techniques, specifically focused sparse convolution
(FSCN), to enhance the model’s performance.

FSCN operates under the principle of fine-grained sparsity,
where sparsity is distributed across the network. Fine-grained
sparsity allows for more nuanced control over which weights
contribute to the output, potentially leading to more efficient
computations.

Conducting convolutions, mainly extracting voxel features,
is the most time-intensive aspect of model execution. However,
sparse convolutions significantly accelerate these calculations
and processing, meeting practical demands. The paper inves-
tigates the potential of the SECOND model of replacing the
backbone with FSCN to assess model accuracy and processing
speed.

The total loss used during training enhanced SECOND
model is a combination of the discussed loss functions:

Ltotal = β1Lcls + β2(Lreg−θ + Lreg−other) + β3Ldir (1)

in which Lcls is the classification loss, Lreg−other is the
regression loss for position and size, Lreg−θ is the angle loss,
Ldir is the direction classification loss, β1 = 1.0, β2 = 2.0, β3

= 0.2 are constant coefficients in this loss formula.

B. Constructing the dataset

The KITTI 3D dataset is a published dataset for computer
vision in general and autonomous driving systems in particu-
lar. This dataset, derived from self-driving vehicles, includes
images, point clouds, and associated information. However,
when deploying the KITTI dataset in Vietnam presents several
challenges. The first dataset reflects European (specifically
German) road conditions characterized by well-demarcated
roads conducive to object identification. The second one is
the representation of vehicles. The KITTI dataset predomi-
nantly features cars, while Vietnamese roads are dominated
by motorbikes and bicycles. This disparity can significantly
impact the dataset’s applicability in Vietnam. The third one
is that the Lidar 64 sensor’s point cloud resolution in the
dataset yields high point density but requires a costly sensor.
The last one is that the dataset labels only objects within the
camera’s visible range, resulting in partial vehicle annotations
that enclose the front part of the vehicle with bounding boxes
around the corresponding point clouds of identified objects.

Restricting the viewing angle is a notable limitation, as it
only labels the front portion within the camera’s field of view.
This limitation impacts recognizing specific objects crucial
for autonomous vehicles, necessitating a comprehensive 360◦

view of surrounding objects. To overcome this limitation, we
proposed to enhance the KITTI 3D dataset’s perspective as
follows:

1. Utilize a deep learning model with pre-trained weights to
re-identify all surrounding objects, extending beyond the
camera’s limited field of view. The focus is on achieving
high accuracy rather than processing speed, aiming to
reduce the need for post-calibration adjustments.

2. Employ the open-source SUSTECH tool [24], facili-
tating the visualization and information editing of 3D
objects within a user interface. This tool aids in refining
object-related data to enhance accuracy in the object
recognition process.

3. Iteratively apply Steps 1 and 2 to expand the dataset’s
coverage and refine object labels, progressively enhanc-
ing the dataset’s quality for subsequent training purposes.
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To ensure a proposed model can work well in actual road
conditions in Vietnam, we also train the model on a real
dataset with 3500 kilometers of data from various rod types
in Vietnam. The data is collected using Lidar16 and Lidar32
sensors since these sensors are more cost-effective and suitable
for Vietnam’s conditions. In addition, this dataset is standard-
ized with labels following a uniform structure compatible with
various published data sources. Finally, the data collection is
aligned with the characteristics of Vietnam’s roads, focusing
on critical vehicles such as cars, motorbikes, bicycles, and
pedestrians. Figure I presents the data using Lidar 16 and Lidar
32 in the street in Vietnam.

IV. EXPERIMENT RESULTS

Besides using the published dataset Kitti3D, we also use the
dataset described in Table II.

In Table II, Kit3D-1 and Kit3D-2 having 500 and 7,481
samples Kitti3D dataset, respectively. These samples were
collected using a Lidar Velodyne 64 sensor and labeled for
objects within a 180-degree frontal view of the vehicle.
In addition, Kit3D-2 has added 500 individually-developed
samples generated as described in Section III.B. Kit3D-3
is a dataset enhanced from Kit3D-2 with more than 1000
individually-developed samples and manually labeled within
a 360-degree frontal view of the vehicle. It contains 1000
customized manually labeled samples, also collected using a
Lidar Velodyne 64 sensor.

The CUS-1 and CUS-2 datasets also take 2000 and 1000
enhanced samples from Kitti3D with labels that cover a 360-
degree view of the vehicle. Notably, the CUS-1 dataset has
1000 individually developed samples using Lidar 16 sensors.
In addition, the CUS-2 dataset has 500 individually developed
samples using Lidar 16 sensors and 1000 individually devel-
oped samples using Lidar 64 sensors. All samples in CUS-1
and CUS-2 are customized to cover a 360-degree view of the
vehicle.

The performance of the deep-learning model is evaluated us-
ing AP and AP |RN (with N = 40) measures. They are widely
adopted in object recognition studies over 3D datasets. These
metrics comprehensively evaluate object recognition model
performance, encompassing accuracy and completeness. AP is
typically employed to assess overall model performance, while
AP |RN (see Equation 2) helps evaluate model performance
under conditions where high precision is crucial.

AP |RN
=

1

N

∑
r∈R

Pinterpolare(r), (2)

Given R = [r0, r0 +
r1−r0
N−1 , r0 +

2(r1−r0)
N−1 , ..., r1], the preci-

sion corresponding to each recall level r is interpolated. This
interpolation is achieved by identifying the maximum precision
value for which the recall value is greater than or equal to r,
as expressed by Equation 3.

Pinterpolare(r) = max
r̃:r̃≥r

P (r̃) (3)

In the experiment, the rotated threshold IoU3D is 0.7 for
cars and 0.5 for pedestrians and cyclists. The IoUBEV is
computed by projecting the 3D bounding box onto the ground
plane for BEV detection.

The first experiment evaluates the performance of using
backbone FSCN instead of voxel backbone in 3D detection.
The deep learning model with different backbones is trained
on the KITTI dataset and then tested on Kit3D-1. Table ??
presents the obtained data and indicates that adopting the
FSCN convolution backbone enhances model accuracy. How-
ever, utilizing the focal backbone prolongs model processing
time since it takes 19.57s average to detect objects, while the
voxel backbone uses 17.49s.

From the first empirical findings, we observe that modifying
the model yields minimal changes. Therefore, we focus on
leveraging diverse datasets in the following experiment to en-
hance the model’s adaptability to Vietnamese traffic conditions.
In more detail, we focus on data processing techniques as
follows. First, training models on KIT3D-1, KIT3D-2, and
KIT3D-3 datasets will be used, and then the performance on
real datasets in Vietnamese traffic conditions will be verified.
This real dataset belongs to the Phenikaa-X corporation. Due
to confidentiality requirements, this dataset is not publicly
accessible and is solely permitted to support the implemen-
tation of this paper. The dataset comprises samples collected
using Lidar 16 and 32 sensors to capture 3000 kilometers of
data from various road types in northern Vietnam, including
highways, interprovincial roads, urban areas, and residential
streets and 500 kilometers within Phenikaa University’s cam-
pus and surrounding areas. This dataset is directly developing
for Phenikaa’s autonomous vehicles.

Table IV clearly illustrates the challenges we face. When
the models are trained on the public dataset, they struggle
to recognize 3D objects in Vietnamese traffic conditions,
achieving only 0.94% accuracy with the Kit3D-1 dataset and
17.77 % with the Kit3D-2 training dataset and 18.43 % with
the training dataset Kit3D-3. The low accuracy is a direct result
of the limitations in the Kit3D-1 dataset, which only includes
labels for the 180-degree frontal view of the vehicle. This
results in the model’s inability to identify surrounding objects
(covering a 360-degree view of the vehicle). Moreover, as these
datasets are public and not specifically tailored to Vietnamese
environmental conditions, identifying accurate vehicle objects
becomes challenging, thus leading to lower accuracy rates.

Table IV also indicates that the quality of data collection
sensors significantly impacts dataset quality in terms of point
cloud density and object distribution upon detection. It’s cru-
cial to emphasize that employing a combination of public and
individually developed datasets is a step in the right direction to
enhance model adaptability. However, these promising results
are unsatisfactory due to these datasets’ sparse point cloud
density. Sparse point cloud density refers to a situation where
the Lidar sensors have not captured enough data points in a
given area, leading to gaps in the data. The Kit3D-3 dataset,
despite being an extension of the public KITTI dataset that
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The data collected at Vietnam’s road using Lidar 16

The data collected at the campus of Phenikka University in Vietnam using Lidar 32

TABLE I
EXAMPLE COLLECTED DATA USING LIDAR 16 AND LIDAR 32, RESPECTIVELY IN VIETNAM

KITTI dataset mixed dataset
Kit3D-1 Kit3D-2 Kit3D-3 CUS-1 CUS-2

Lidar 64 64 64 64 + 16 64 + 32 + 16
Angle 1800 1800 + 3600 3600 3600 3600

Number of samples 500 7481 + 500 7481 + 1500 2000 + 1000 1000 + 1000 + 500

TABLE II
ALL DATASET IN THE PAPER

Measure Voxel Voxel Focal
AP 81.765 % 82.395 %

APR40 84.1 % 84.29 %

TABLE III
PERFORMANCE OF THE SECOND MODEL WITH DIFFERENT BACKBONE.

Measure KIT3D-1 KIT3D-2 KIT3D-3 CUS-1 CUS-2
AP 0.9 9.09 9.09 28.64 40.09

APR40 0.94 17.11 18.43 48.72 47.77

TABLE IV
PERFORMANCE OF THE MODEL TRAINED ON DIFFERENT DATASETS AND

VERIFYING ON PHENIKAA’S DATASET.

was individually developed for improved accuracy, still falls
short of practical deployment requirements due to the sparsely
distributed point cloud density resulting from using Lidar16
sensors for data collection. This underscores the pressing need
to enhance data quality, even when collected under Vietnam’s

traffic conditions, and emphasizes the necessity for sensor
improvement.

The model trained on the CUS-1 and CUS-2 datasets
achieved accuracies of 48.72% and 47.77%, respectively.
These training models combine public data with individually
developed samples, addressing limitations present in both
datasets, such as unsuitable environmental conditions for Viet-
namese traffic and insufficient point cloud density for effective
object recognition. However, it’s crucial to stress the need for
continuous improvement. Our work is not done yet. Training
additional datasets under Vietnamese environmental conditions
using advanced Lidar sensors is recommended to improve
model accuracy further and ensure the safer deployment of
autonomous vehicles in traffic scenarios. This emphasis on
continuous improvement underscores the importance of our
collective efforts in this field.

V. CONCLUSION

This paper presents a deep learning-based model designed
to enhance 3D object detection capabilities in autonomous ve-
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hicles operating within the unique traffic conditions prevalent
in Vietnam. By focusing on the computation of features for
only the most relevant voxels, the model significantly reduces
computational overhead and accelerates the convergence of the
detection process through direct point cloud transformations.
Addressing the shortcomings of the widely used KITTI 3D
dataset, we evaluated our approach over an innovative pro-
prietary dataset (Phenikaa-X datasets) utilizing Lidar16 and
Lidar32 sensors to capture the nuances of Vietnamese traffic
scenarios accurately. The experimental validation of the model
across both the KITTI 3D and Phenikaa-X datasets demon-
strates substantial advancements in object detection perfor-
mance. These findings underscore the potential of the proposed
model to significantly improve safety and reliability in various
traffic environments, particularly in regions characterized by
complex driving conditions, such as Vietnam.
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