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Abstract—A speaker-turn-aware training data generation
method for end-to-end neural diarization (EEND) has been
studied. To compensate the lack of real multi-talker training
corpus, using artificial multi-speaker conversation data generated
from several single speaker’s speech has been a promising way
to train EEND models. It is still expected that making the
training data close to real multi-talker situation can improve
EEND performance. In order to generate a data that contributes
to the better performance of trained EEND model, we inves-
tigated two speaker alternation handling methods. One is a
data-dependent model that introduces a probabiliry of speaker
transition extracted from multi-talker data. The other one is
a data-independent model that uniformly samples the speaker-
alternation probability. Experimental results have showed that
the data-dependent method improves the DER as compared with
baseline simulated conversations (SC) method on 3-speaker and
4-speaker scenarios. Moreover, it was also confirmed that the
data-independent method can achieve comparable performance
on the best model on 3 and 4-speaker scenarios.

I. INTRODUCTION

Speaker diarization is a task that detects “who spoke when”
from multi-talker audio. Speaker diarization outputs are used
in the preprocessing step for multi-talker tasks such as source
separation and multi-talker speech recognition [1]. In order
to perform speaker diarization, a clustering-based model or
an end-to-end model can be used. A clustering-based model
[2]–[7] is a model that performs a cascade process. In general,
it performs speech activity detection, segmentation, speaker
feature extraction, and clustering to distinguish the speaker of
the input audio.

On the other hand, an end-to-end neural diarization (EEND)
model has been investigated [8]–[10]. It directly predicts
whether each speaker is talking in a single step, frame by
frame. Due to the development of the EEND model, it outper-
forms the clustering-based model. However, for training the
EEND model, a lot of annotated multi-talker data is required.
Moreover, it is too costly to prepare the annotated data since
we need to label when and how long each person speaks.
Therefore, the data generation from the speech data of a
single speaker is generally applied for training the EEND
model at a lower cost [8], [11]. The simulated data are
generated as follows: (1) Preparing source data containing
multiple speakers’ speeches with each utterance involving only
a single speaker’s speech. (2) Choosing 2, 3, or 4 speakers and
extracting utterances of the chosen speaker from source data.
(3) Generating multi-talker speech through concatenating the
utterances.

The generated data needs to resemble real data to improve
EEND performance. Several approaches have investigated
which elements should closely match real data and how to
simulate it. Simulated mixtures (SM) [8], [11], used in the
original EEND model, considered silence intervals between
each speaker’s utterances. Simulated conversations (SC) [12],
[13] extended SM method and generated multi-talker speech
using statistics about distributions of pauses and overlaps
estimated on real conversations.

In this work, we also investigate the elements to improve the
EEND model and focus on speaker alternation in the generated
data. Speaker alternation occurs when one speaker finishes and
another speaker begins to speak. In a real conversation, one
speaker may speak a lot, while others speak less. To model
this conversation, we introduce speaker transition probabili-
ties. Speaker transition probabilities involve not only speaker
alternation but also a case where one speaker begins to speak
again. The SC method implicitly models the speaker transition
probability, but it depends on the source data. We first remove
the dependency and then investigate two approaches. One is a
data-dependent approach that uses the probabilities extracted
from statistics on real conversations. The other is a data-
independent approach that uses uniform probabilities.

II. RELATED WORKS

A. Simulated mixtures (SM)

The SM method [8], [11] is a data generation method for
creating multi-talker audio. It involves overlapping the single-
speaker audio to create multi-talker audio. Single-speaker
audio is created by preparing speech segments from that
speaker and concatenating the prepared speech segments with
a certain silent interval between them. The silent intervals are
determined by random numbers that follow an exponential
probability distribution.

By varying the parameters of the exponential distribution,
it is possible to adjust the silent intervals, and the overlapping
intervals indirectly when multi-talker audio from multiple
single-speaker speech is overlapped. It is known that the way
overlapping sections are created with SM method may generate
data that differs from actual multi-talker audio, the overlapping
sections continue for a long time or there are many sections
where all speakers overlap, which is not often seen in real
conversations.



B. Simulated conversations (SC)

SC method [12], [13] creates multi-talker audio by con-
necting speech segments from multiple speakers, creating
overlapping and silent sections. When connecting speech seg-
ments from the same speaker, a certain interval of silence
between them is made. When connecting speech segments
from different speakers, a certain interval of silence or overlaps
between them is made. The length of this overlapping section
or silent section is determined by randomly selecting one value
from the silent section lengths and overlapping section lengths
collected from actual audio data. The choice of whether to
create silent intervals or overlapping intervals when different
speakers are speaking successively is also determined based on
the distribution obtained from actual speech data. The order
in which these speakers speak is randomized in simulated
conversations.

In simulated mixtures, single-speaker audio is created first,
then multi-talker audio is created, but in simulated conversa-
tions, multi-talker audio is created from the beginning. This
makes it possible to control silent sections and overlapping
sections in multi-talker audio more directly. Simulated con-
versations suppress the generation of speech that is not often
seen in actual conversations, such as when there are long
overlapping sections or when there are many sections where
all speakers overlap. By making the simulated data closer to
real data, the performance of EEND is improved.

III. SPEAKER TRANSITION PROBABILITY

The frequency of speaker alternation depends on the domain
of a real conversation. For example, speaker alternation in
telephone communication is less than in standard face-to-face
conversation. We expect that controlling speaker alternation
yields an improvement in the EEND model. To model the
speaker alternation, we introduce the speaker transition prob-
ability. We additionally consider the last speaker and the next
speaker, and the probability P (next speaker|last speaker) of
speaker alternation occurring using a first-order Markov model.
We also consider P when the next speaker is the same as the
last speaker. In total, there are S2 patterns, where S denotes
the number of speakers in one audio. Fig. 1 shows an example
in a 3-speaker scenario. When the last speaker is speaker A, we
need to calculate P (A|A), P (B|A), and P (C|A). We follow
the SC method to model other aspects such as overlap and
silence ratios.

A. Speaker transition probability on other methods

The speaker transition probability is not determined in the
SM method because it involves concatenating speeches from
a single speaker and then from multiple speakers. In the SC
method, the speaker transition probability is implicitly decided
by the source data. It prepares all utterances of the selected
speaker and randomly samples from the candidates. Therefore,
the speaker transition probability depends on the number of
each speaker’s candidates of source data. Specifically, in 3-
speaker scenario, we consider PSC(A), PSC(B), and PSC(C).

Fig. 1. Overview: Data generation of multi-talker audio using speaker
transition probability. Simulated conversations extract speaker transition prob-
abilities from source data. Our method extracts speaker transition probabilities
from real conversations or specifies them as equal probabilities.

Each probability is determined as follows:

PSC(A) = ma/M,PSC(B) = mb/M,PSC(C) = mc/M

where, m∗ denotes the number of candidates extracted from
speaker-∗ speeches, and M = ma +mb +mc. Because each
speech is used only once, m∗ = m∗ − 1 once speaker-∗ is
sampled. The number of candidates is based on the source
data. Occasionally, PSC can be biased, which is not expected.

B. Data-dependent approach

As a data-dependent approach, we extract the probability
from the real multi-talker data. We calculate the speaker
transition probability for each conversation using the multi-
talker data. We prepare lists of speaker transition probabilities.
In the data generation step, we randomly choose one of the
lists and generate a multi-talker speech following the extracted
speaker transition probability. To identify speakers A, B, ...,
and N, we follow the order in which each speaker speaks in
the real conversation.

C. Data-independent approach

As a data-independent approach, we use a uniform prob-
ability. All probabilities are 1/Nspk. In the data-dependent
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TABLE I
COMPARISON OF THE NUMBER OF AUDIO FILES FROM REAL

CONVERSATIONS DATASET.

Dataset 2-speaker 3-speaker 4-speaker
DIHARD 3 157 16 16

CALLHOME 2 148 74 20
AMI 0 4 129

CALLHOME 1 (oracle) 155 61 23

approach, we need to prepare real conversations to extract
the speaker transition probability. However, the public dataset
provides a limited number of utterances (detailed in TABLE I),
which may cause over-fitting. Therefore, we remove the de-
pendency on speaker alternation and analyze how this affects
the performance of the EEND model. This data-independent
method helps remove the dependency on source data in SC
methods.

IV. EXPERIMENTAL EVALUATION

A. Dataset and speaker transition probabilities

For data generation, we used LibriSpeech [14]. LibriSpeech
is a speech corpus consisting of 961 hours of single-speaker
recordings from 2,338 speakers. Statistical information to
control overlap and silence ratio was obtained from the DI-
HARD 3 dev set [15]. The DIHARD 3 dev set is a speech
corpus consisting of 34 hours of multi-talker conversations
involving 548 speakers. For the evaluation, we used the 2,
3, and 4-speaker audio from CALLHOME 1, a subset of the
2000 NIST Speaker Recognition Evaluation (CALLHOME)
corpus [16]. We divided CALLHOME into CALLHOME 1
and CALLHOME 2 using the Kaldi toolkit [17]. The duration
of CALLHOME 1 and CALLHOME 2 are as follows: 2-
speaker audio has 3.2 hours and 3.0 hours, 3-speaker audio
has 2.1 hours and 3.0 hours, and 4-speaker audio has 2.2 hours
and 1.8 hours, respectively. All audio was used at 8kHz.

In the data-dependent approach, we extracted the speaker
transition probability from the DIHARD 3 dev set, CALL-
HOME 1/2, and AMI train set [18]. CALLHOME 1 was
used as an oracle. TABLE I shows the number of audio
files for each dataset. For the 2-speaker, 3-speaker, and 4-
speaker scenarios, DIHARD 3 and CALLHOME 1 and 2 were
used. To prevent overfitting, we only used datasets containing
more than 30 audio files, and we mixed the datasets when
the dataset provided a limited number of audio files. In the
data-independent setting, the value of each speaker transition
probability was set to 0.25 for the 4-speaker scenario, 0.33 for
the 3-speaker scenario, and 0.50 for the 2-speaker scenario as
equal probabilities.

B. End-to-end neural diarization

EEND [8], [11] is a model approach that achieves end-
to-end speaker diarization by framing the task as a multi-
label classification problem, which classifies the presence of
multiple speakers within each frame. This model usually uses
a transformer encoder, and given acoustic features of length
T with D dimensions (xt | xt ∈ RD)Tt=1, the EEND model

generates outputs as described in Equation (1).

y1, · · · ,yT = fEEND(x1, · · · ,xT ) (1)

Here, yt = [yt,1, · · · , yt,S ]T ∈ (0, 1)S denotes the probability
of speech presence for S speakers in frame t.

C. Experimental settings

In all settings, we generated 2,480.6 hours of audio. We
generated audio according to the number of speakers in the
evaluation set. Impulse responses were not used, but back-
ground noises obtained from the MUSAN corpus [19] were
used, and the SNR was set to one of 5, 10, 15, or 20 dB. The
input features for the EEND model were 23-dimensional log
Mel-filterbanks with a frame length of 25 milliseconds and
a frameshift of 10 milliseconds. The EEND model consists
of four transformer encoder blocks, each with 4 heads and
256 attention units. The dropout rate was also set to 0.1, and
the position-wise feedforward layer had 1024 internal units.
The optimizer used was Adam with a noam scheduler, and the
warmup period was set to 25,000 steps. The batch size during
training was 64, and the model was trained for 100 epochs.
After 100 epochs of training, averaging was performed on the
models from epochs 91 to 100, and this averaged model was
used for evaluation.

During inference, the threshold for outputting speech seg-
ments was set to 0.5, and a median filter of size 12 frames
was applied before determining the speech segments. The
diarization error rate (DER) defined by NIST [20] was used as
the evaluation metric. DER is broken down into missed speech
(Miss), false alarm (False), and speaker confusion (Conf.).
During evaluation, errors of less than 250 milliseconds were
tolerated.

V. RESULTS AND DISCUSSION

A. Comparison of end-to-end neural diarization performance
with 2 and 3-speaker

TABLE II shows the DER for 2-speaker and 3-speaker set-
tings and TABLE III also shows speaker alternation occurrence
rates. In the 2-speaker setting, the data-dependent approach
using CALLHOME 2 achieved comparable performance com-
pared with the SC method. While all methods improved missed
speech, they degraded false alarm and speaker confusion com-
pared with the SC method. All methods caused more speaker
alternations than the SC method as shown in TABLE III. We
consider that it positively affects missed speech. However, it
worsens false alarm and speaker confusion because the 2-
speaker scenario is a relatively easy task.

In the 3-speaker setting, we observed that our methods
yielded improvement in CALLHOME 2 + DIHARD 3. Dif-
ferent from the 2-speaker scenario, our methods improved
speaker confusion. Because the number of speakers increased,
detecting speakers in the 3-speaker scenario is a harder task
than the 2-speaker scenario. However, the data-dependent
approach using CALLHOME 2 worsened the DER. It dras-
tically improved the false alarm, but degraded missed speech.
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TABLE II
DER (%) FOR 2-SPEAKER AND 3-SPEAKER SETTING. DER IS

DECOMPOSED INTO MISS (MISSED SPEECH), FALSE (FALSE ALARM), AND
CONF. (SPEAKER CONFUSION).

#spk Speaker transition Miss False Conf. DER

2

SC [baseline] 8.2 3.6 4.4 16.2
Data-dependent

DIHARD 3 7.4 5.4 6.3 19.0
CALLHOME 2 6.5 5.0 4.6 16.1
CALLHOME 2 + DIHARD 3 7.5 5.3 5.2 17.9
CALLHOME 1 (oracle) 7.7 3.4 5.8 16.9

Data-independent (uniform) 7.1 5.0 5.6 17.7

3

SC [baseline] 11.2 6.1 12.5 29.7
Data-dependent

CALLHOME 2 17.4 2.9 12.2 32.6
CALLHOME 2 + DIHARD 3 10.9 6.5 11.6 29.1
CALLHOME 1 (oracle) 11.8 5.8 11.0 28.6

Data-independent (uniform) 10.8 6.8 10.8 28.5

TABLE III
COMPARISON OF SPEAKER ALTERNATION OCCURRENCE RATES (%) IN

GENERATED DATA USING DIFFERENT SPEAKER TRANSITION
PROBABILITIES FOR EACH NUMBER OF SPEAKERS

Speaker transition
#spk 2 3 4

SC [baseline] 45.9 63.0 71.7
Data-dependent

DIHARD 3 58.8 - -
CALLHOME 2 75.5 81.4 -
CALLHOME 2 + DIHARD 3 66.9 77.3 74.7
AMI - - 76.4
AMI + CALLHOME 2 - - 77.3
AMI + DIHARD 3 - - 75.5
AMI + CALLHOME 2 + DIHARD 3 - - 76.3
CALLHOME 1 (oracle) 78.9 81.8 83.1

Data-independent (uniform) 50.1 66.8 75.1
CALLHOME 1 (eval) 81.6 83.1 83.3

The speaker alternation occurrence rate was similar to the
evaluation data, but the limited number of samples may have
led to overfitting. In the CALLHOME 2 + DIHARD 3 setting,
the overfitting is alleviated. The data-independent approach
also improved the performance compared with the SC method
and achieved comparable performance to the data-dependent
approach using CALLHOME 1 (oracle). This result implies
that the balance of the number of the speaker’s utterances
is one of the keys to the EEND model to train the speaker
transition.

B. Comparison of end-to-end neural diarization performance
with 4-sepaker

TABLE IV shows the DER for 4-speaker setting. We ob-
served that our methods yielded improvement in AMI and
AMI + CALLHOME 2 + DIHARD 3. Similarly to the 3-
speaker setting, our methods improved speaker confusion.
We also observed that our method yielded improvement in
CALLHOME 2 + DIHARD 3. Specifically, it did not improve
speaker confusion, but it improved false alarm. Using AMI +
CALLHOME 2 and AMI + DIHARD 3 improved false alarm
compared to using AMI only. Similar to this, we consider that
using CALLHOME 2 + DIHARD 3 improved false alarm. But
using AMI + CALLHOME 2 and AMI + DIHARD 3 degraded
DER. Because the number of AMI is larger, the dataset ratio

TABLE IV
DER (%) FOR 4-SPEAKER SETTING. DER IS DECOMPOSED INTO MISS

(MISSED SPEECH), FALSE (FALSE ALARM), AND CONF. (SPEAKER
CONFUSION).

Speaker transition Miss False Conf. DER
SC [baseline] 8.2 7.2 17.8 33.2
Data-dependent

AMI 8.5 7.6 16.4 32.4
AMI + CALLHOME 2 8.7 6.4 18.9 34.0
AMI + DIHARD 3 9.2 7.0 17.5 33.7
CALLHOME 2 + DIHARD 3 8.8 6.3 17.5 32.7
AMI + CALLHOME 2 + DIHARD 3 9.0 7.4 16.1 32.4
CALLHOME 1 (oracle) 7.7 8.2 17.6 33.5

Data-independent (uniform) 8.3 7.0 17.0 32.3

bias in AMI + CALLHOME 2 and AMI + DIHARD 3 is
bigger than in CALLHOME 2 + DIHARD 3 (2-speaker and
3-speaker). We consider that the dataset ratio bias negatively
impacts performance.

The data-dependent approach using CALLHOME1 (oracle)
worsened the DER. The speaker alternation occurrence rate
was most similar to the evaluation data in the 4-speaker
scenario dataset, but the limited number of samples may lead
to overfitting as well as using CALLHOME2 in the 3-speaker
scenario.

The data-independent approach improved the performance
compared SC method and achieved comparable performance
to the data-dependent approach using AMI + CALLHOME 2
+ DIHARD 3.

C. Discussion of data-dependency in speaker transition

In any speaker scenario, while the best DER of the data-
dependent approach was better, the DERs of some data-
dependent approaches were worse than the baseline method.
This is because the speaker transition highly depends on
the dataset. On the other hand, data-independent approaches
are more robust than data-dependent methods and achieve
the best performance in 3 and 4-speaker settings. The data-
dependent approach may improve further, but we need to
prepare more data of multi-talker data. We consider that the
speaker transition itself can affect the DER performance and
can be seen as a hyperparameter of the data generation.

VI. CONCLUSIONS

In this study, we extended the method of determining
speaker alternation in simulated conversations, which was orig-
inally based on the speaker transition probabilities from source
data, to use speaker transition probabilities from real conver-
sational audio and uniform distribution. In the 3-speaker and
4-speaker settings, we achieved DER improvements through
significant reductions in speaker confusion. Furthermore, in
scenarios where our method is effective, it suggests that the
data-independent approach can achieve performance improve-
ments comparable to the data-dependent approach.

Future work will involve investigating whether similar trends
can be observed using the same method on evaluation corpora
with a larger number of speakers and different tasks. Addi-
tionally, we will continue to explore the effects of introducing
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deeper speaker transition probabilities, such as those modeled
by a second-order Markov process.
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