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Abstract—This paper describes a multi-task learning method
to improve speaker adaptation in visual speech recognition
(VSR). VSR models are highly sensitive to variations in lip
movements, resulting in degraded accuracy for speakers not
encountered during training. A typical solution is to fine-tune
pre-trained models with minimal data from the target speaker,
but this often faces overfitting to the specific speech content
of those samples. Effective speaker adaptation requires VSR
models to learn both static and dynamic aspects of individual lip
features independently of speech content. However, the dynamic
features are time-variant and intertwined with similarly time-
variant content information. To address this issue, we introduce
an additional task into the fine-tuning process that encourages
the model to focus on acquiring disentangled dynamic iden-
tity features. Specifically, we apply temporal transformations
to the latent visual representations and input them together
with the original ones into a dynamic identity discriminator.
The discriminator determines whether each entry is original or
transformed, where both sets of representations share the same
static identity features and speech content, thereby promoting the
desired speaker adaptation. Our evaluation demonstrates that the
proposed method improves recognition accuracy for all speakers
across two different datasets: public online speech videos and our
private recordings using a smartphone camera.

I. INTRODUCTION

Visual speech recognition (VSR), also known as lipreading,
aims to recognize speech content solely based on lip move-
ments [1]. VSR has attracted attention as an alternative to
traditional automatic speech recognition (ASR), particularly
in noisy environments or situations where speaking aloud is
impractical. Additionally, VSR can be a valuable communi-
cation tool for those with hearing or speech impairments. In
practical applications, VSR has already been implemented in
systems known as silent speech interfaces (SSIs) [2], which
enable users to input text without vocalization. To ensure high
accuracy in these systems, it is crucial to develop models that
are tailored to individual users.

One of the major challenges in VSR is the decreased
recognition accuracy for speakers not included in the training
data. For example, the word error rate (WER) of a VSR
model [3] is 18.0% for speakers seen during training but rises
to 30.5% for unseen speakers. This performance drop occurs
due to the model’s sensitivity to the diverse lip movements
of different individuals. The most effective approach to adapt
VSR models to unseen speakers is to perform parameter re-
optimization (i.e., fine-tuning) on the entire model using a
substantial amount of data from these speakers. However, in
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Fig. 1. Our multi-task learning approach employs temporal transformation
and a dynamic identity discriminator to adapt VSR models to speaker-specific
lip movements independently of speech content.

real-world scenarios, gathering sufficient data for this fine-
tuning is challenging, as manual data collection places a
significant burden on users.

One remedy to this issue is applying parameter-efficient fine-
tuning methods, particularly low-rank adaptation (LoRA) [4].
These methods leverage the extensive knowledge of pre-trained
models and require fewer training samples compared to full
parameter fine-tuning. While LoRA has proven effective in
VSR [5] to some extent, it can lead to undesired learning
behaviors when only minimal data from the target speaker
is available. In speech videos, the speaker-dependent iden-
tity and speaker-independent content information are visually
entangled, making it challenging to extract the information
required for the target task [6]. Consequently, while LoRA can
effectively capture the target speaker’s identity with sufficient
additional training samples, it tends to overfit the speech
content of these samples under minimal data conditions.

In this paper, we present a novel multi-task learning ap-
proach that compels the VSR model to focus on the dynamic
aspects of lip features (see Fig. 1). Generally, identity informa-
tion includes two aspects: static (spatial) features related to lip
appearance or shape and dynamic (temporal) features related to
speaking speed or rhythm [5]. For effective speaker adaptation,
the model needs to learn both features independently of speech
content. Since the static identity features are time-invariant
and unaffected by time-variant content information, the model
can naturally acquire them during fine-tuning. Conversely, the
dynamic identity features are time-variant and often emerge



alongside content information, such as the duration of pronun-
ciation or the linking of sounds. Therefore, it is necessary to
help the model acquire disentangled dynamic identity features
in parallel with predicting speech content.

To perform effective speaker adaptation while preserving
the robustness of pre-trained models against diverse speech
content, we introduce an additional task into the fine-tuning
process with generalized low-rank adaptation (GLoRA) [7].
Specifically, our method updates trainable low-rank decompo-
sition matrices such that the model simultaneously recognizes
dynamic identity features and produces accurate VSR results.
The additional task incorporates temporal transformation and
dynamic identity discrimination. The temporal transformation
introduces local variations into the original dynamic identity
features by randomly adding or removing frames of the latent
visual representations with a certain probability. The dynamic
identity discriminator receives the embeddings of both the
original and transformed latent visual representations and
determines whether each embedding entry is derived from
the original or transformed representations. Since both sets
of representations share the same static identity features and
speech content, the model must focus on the target speaker’s
unique dynamic identity features to accomplish the additional
task, thereby promoting the desired speaker adaptation.

Our multi-task learning approach for speaker adaptation
prevents VSR models from overfitting speech content without
requiring additional data collection. It facilitates efficient learn-
ing of speaker-specific lip features and promotes model spe-
cialization through targeted adjustments rather than relying on
data augmentation or network architecture changes. As a result,
our approach can be applied to various existing VSR models.
Experimental results show that our method consistently im-
proves accuracy for unseen speakers, both in a publicly avail-
able dataset and a custom dataset collected using a smartphone
camera to simulate SSI scenarios. Notably, for some speakers,
our proposed model trained with 80 samples even outperforms
the ordinarily fine-tuned model with 100 samples.

II. RELATED WORK

This section reviews existing research on model adaptation
for VSR to handle speakers absent from the training data. We
also explore the components of lip feature representation and
their effects on speech recognition accuracy.

A. Speaker Adaptation in VSR

Speaker adaptation methods for VSR models have primarily
focused on parameter re-optimization. Early research typically
adjusted all model parameters using training data that included
multiple target speakers. For example, some studies [6], [8]
presented a multi-task learning approach that integrated the
speaker identification task with VSR. Another approach by
Kandala et al. [9] proposed utilizing speaker-specific latent
identity vectors as additional inputs to the hidden layers of a
VSR model. However, these approaches resulted in significant
computational and data collection burdens. To address these

issues, researchers have developed parameter-efficient fine-
tuning methods that utilize samples from only a single target
speaker. Examples include techniques such as input video
transformation [10], prompt tuning [11], and low-rank adapta-
tion (LoRA) [5]. These approaches enable speaker adaptation
with a small amount of data by leveraging the knowledge
embedded in existing pre-trained models.

Despite these advancements, there remains a significant
lack of publicly available VSR datasets with adequate speaker
labels. As a result, previous research on speaker adaptation
has had to rely on datasets that share a limited vocabulary
across the training, validation, and test data, such as the LRW
dataset [12] and the GRID dataset [13]. Moreover, these studies
have focused on classifying input videos into word classes
present in the training data. Reflecting current progress in ASR,
recent VSR models have shifted towards predicting sentences
with unrestricted vocabularies through sub-word classifica-
tion [14]. In this study, we advance speaker adaptation from
word classification to sentence prediction by incorporating
sub-word context through connectionist temporal classifica-
tion (CTC) and attention mechanisms [15]. We also use two
datasets with unrestricted vocabularies for our experiments: the
publicly available VoxCeleb2 dataset [16] and a custom dataset
developed to simulate real-world VSR applications.

B. Lip Feature Representation

Lip feature representation in VSR contains both identity and
content information. This nature complicates the process of
extracting and applying the information required for specific
objectives, especially when the number of training samples is
limited. For example, identity information can interfere with
text prediction in VSR models, and content information is
irrelevant for speaker adaptation. Existing studies on speaker
adaptation have primarily addressed this issue by decoupling
identity information from content information [6], [8].

Furthermore, He et al. [5] observed that identity informa-
tion comprises both static (spatial) and dynamic (temporal)
features. Static features are related to physiological aspects
such as lip appearance and shape, while dynamic features are
associated with behavioral aspects such as speaking speed and
rhythm. In VSR, variations in lip opening widths caused by
different voicing methods have led to performance gaps [17].
Specifically, larger lip openings in unvoiced speech resulted
in an 8.5% decrease in accuracy compared to voiced speech,
indicating that static identity features substantially affect VSR
performance. Additionally, in both ASR and VSR, Pandey
and Arif [18] demonstrated the relationship between speaking
speed and recognition accuracy. Their results consistently
show that native English speakers have lower accuracy than
non-native speakers, attributed to their faster speaking speed.
This performance decline is caused by shorter pronunciation
durations and the linking of adjacent sounds, highlighting
the importance of dynamic identity features in recognition
tasks [19]. These findings suggest that adapting to both the
static and dynamic identity features of the target speaker can
contribute to improved recognition accuracy.



III. PROPOSED METHOD

In this study, we apply a parameter-efficient fine-tuning
method to sub-word-based sentence prediction models. First,
we explain the model architecture and the fine-tuning method.
Then, an additional task is introduced to mitigate undesired
overfitting to the content information.

A. End-to-End VSR Model

As the end-to-end model for predicting sub-word sequences
from speech videos, we adopt a CTC/Attention hybrid model
based on the conformer architecture [15], as shown in Fig. 2.
This model employs an encoder-decoder architecture, with the
encoder consisting of front-end and back-end networks. The
input video is cropped to a 96×96 bounding box of the lip
region using landmarks detected by MediaPipe [20]. The visual
front-end comprises a 2D ResNet-18, where the initial layer is
replaced with a 3D convolutional layer to extract both spatial
and temporal features as latent visual representations from the
input. The back-end is a 12-layer conformer encoder that learns
temporal dependencies among the latent visual representations
and outputs 768-dimensional embeddings per frame.

To leverage both CTC and attention mechanisms, the de-
coder is divided into two parallel fully connected (FC) layers.
One processes the raw embeddings, while the other handles the
256-dimensional outputs from a 6-layer transformer decoder.
The ground truth text labels consist of 5,000 sub-word classes
generated by SentencePiece [21], and each FC layer produces a
probability distribution over these classes. Finally, beam search
with a width of 40 is applied to the weighted sum of the output
probabilities from the CTC and attention branches, generating
the predicted sub-word sequence, i.e., the sentence. The loss
function LVSR, which combines the CTC loss pCTC(y|x) and
the cross-entropy loss pCE(y|x), is employed for training the
model. LVSR is expressed as follows:

LVSR = α log pCTC(y|x) + (1− α) log pCE(y|x), (1)

where α = 0.1 is used in the evaluation experiments.

B. Generalized Low-Rank Adaptation (GLoRA)

Given the above-mentioned VSR model pre-trained on large-
scale datasets, we consider fine-tuning it with only minimal
data from the target speaker. Specifically, we aim to facilitate
the model’s learning of speaker-specific lip features while
preserving the linguistic knowledge of the pre-trained model.
For this purpose, we apply generalized low-rank adaptation
(GLoRA) [7] to the attention layers of the 12-layer conformer
encoder, keeping all other parameters fixed.

GLoRA is an advanced version of LoRA [4], designed for
universal parameter-efficient fine-tuning. Let x ∈ RH×1 and
f : RH×1 → RH×1 be the input and a linear transformation,
where H denotes the input dimension. The unified equation
representing all trainable parameters is described as follows:

f(x) = (W0+W0A+B)x+W0C+b0⊙D+E+b0, (2)

where ⊙ denotes the element-wise product. A,B ∈ RH×H ,
C,D and E ∈ RH×1 are the trainable parameters, while
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Fig. 2. The overall architecture of the proposed multi-task learning approach.
We incorporate a discrimination task that distinguishes between the original
and temporally transformed latent visual representations into the output from
the conformer encoder, where GLoRA is applied.

the pre-trained weights W0 ∈ RH×H and bias b0 ∈ RH×1

remain frozen throughout the fine-tuning process. A scales
the pre-trained weight, decomposed into Ad ∈ RH×r and
Au ∈ Rr×H , where r represents the rank of LoRA. B scales
the input and shifts the pre-trained weight, decomposed into
Bd ∈ RH×r and Bu ∈ Rr×H . C acts as the layer-wise
manipulation, decomposed into Cd ∈ RH×r and Cu ∈ Rr×1.
D and E scale and shift the pre-trained bias. We use a
random Gaussian initialization for Au, Bu, and Cu, and zero
initialization for Ad, Bd, and Cd, ensuring A, B, and C are
zeros at the beginning of the training, as well as D and E.

C. Multi-Task Learning

Although the model specialized for individual speakers
needs to learn both static and dynamic identity features in-
dependently of speech content, the dynamic identity features
are time-variant and can overlap with similarly time-variant
content information. To facilitate the model’s learning of dis-
entangled dynamic identity features in parallel with predicting
speech content, we introduce an additional task into the fine-
tuning process. This task involves temporal transformation and
dynamic identity discrimination, as illustrated in Fig. 2.

The temporal transformation introduces local variations into
the original dynamic identity features. As illustrated in Fig. 3,
this is achieved by randomly adding or removing frames of
the latent visual representations produced by the visual front-
end, with a probability of 0.2. This process alters the sequence
shape from T × 512 to T ′ × 512, where T and T ′ represent
the number of frames before and after the transformation,
respectively. Subsequently, the sequence is realigned to the
original shape of T × 512 by either zero-padding or cutting
the end of the sequence. By using both the original and
transformed versions of each sequence during training, the
number of training sequences is doubled from N to 2N , where
N is the number of original data inputs.
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Fig. 3. Example of the temporal transformation process applied to the latent
visual representations obtained from the visual front-end.

We then apply a discriminator to the output from the 12th
layer of the conformer encoder to enable the model to simul-
taneously recognize dynamic identity features and generate
accurate VSR results by updating GLoRA parameters. The
discriminator consists of a global average pooling layer along
the temporal axis and an FC layer. The global average pooling
layer creates a 768-dimensional embedding for each sample
to represent global information about the dynamic identity
features. The FC layer takes this embedding and determines
whether each embedding entry is derived from the original
or transformed representations. Minimizing the binary cross-
entropy loss LBCE compels the VSR model to focus on the
target speaker’s unique dynamic identity features, as both sets
of representations share common static identity features and
speech content. Given the ground truth labels yi, where yi = 1
for original data and yi = 0 for transformed data, and the
predicted probabilities ŷi, LBCE can be formulated as

LBCE = − 1

2N

2N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] . (3)

The overall loss in our multi-task learning method is given by:

L = LVSR + LBCE. (4)

IV. EVALUATION

This section describes experiments conducted to evaluate the
performance of our proposed method for speaker adaptation.

A. Dataset

In our experiments, we used two datasets with unrestricted
vocabularies: the VoxCeleb2 dataset [16] and a custom dataset.
VoxCeleb2 is a publicly available dataset collected from online
videos, originally designed for the speaker recognition task.
Therefore, it includes speaker identity labels but lacks ground
truth text labels. Here, we used its audio data to automatically
generate transcriptions for the text labels, leveraging Whisper
models [22]. For the speaker adaptation settings, we selected
the five speakers with the most utterances from the test
data (S1-S5). The speaker IDs and the size of the training,
validation, and test sets per speaker are shown in Table I.

TABLE I
SPEAKER INFORMATION IN THE VOXCELEB2 DATASET

Speaker ID (folder_name) #Train #Valid #Test

S1 id05816 (SCbhADNyfwg) 70 30 105
S2 id07874 (_3D5upGq24U) 70 30 58
S3 id06692 (9vs0zAHfI0M) 56 24 62
S4 id08696 (Cg9tYEiOCQA) 56 24 54
S5 id04232 (tCiPy0q5588) 42 18 45

To gather the custom dataset, we developed a tailored
app using a smartphone camera to simulate real-world VSR
conditions. In the recording interface, the text to be read is
displayed at the top of the screen, and video is recorded while
a button at the bottom is pressed. Five participants (S6-S10),
who are native or have equivalent English proficiency, took
part in the data collection. We used 300 speech texts from the
LRS3 test data [23], with each participant reading each text
once. In this setup, S6-S10 all read the same texts, while S1-S5
in VoxCeleb2 each utter different sentences. Out of these 300
samples, 200 were fixed as the test set. To evaluate the impact
of adaptation data quantity on performance, we created three
different sets from the remaining 100 samples: 100 samples
(70 for training and 30 for validation), 80 samples (56 and 24),
and 60 samples (42 and 18). The experiments were conducted
five times for each set, with a new random split of the training
and validation data each time.

B. Training Settings

In this study, to leverage the knowledge from large-scale
datasets, we utilized two pre-trained models provided by
Ma et al. [24]. For the VoxCeleb2 evaluation, we used the
model trained on 438 hours of the LRS3 dataset. For the
custom dataset evaluation, we used the model trained on 1,759
hours of the combined LRS3 and VoxCeleb2 datasets. In all
experiments, we trained the model for 100 epochs using the
AdamW optimizer [25] with a learning rate of 1.0×10−5 and a
maximum of 1,800 frames per batch. We thoroughly explored
parameters and selected the configurations that achieved the
best performance. For the rank of GLoRA, we tested r = 4 and
8 based on the findings of [26] and set it to 8. In the inference
phase, the model was created by averaging the weights of the
three best-performing checkpoints based on validation loss.

C. Evaluation Metrics

For evaluation, we used word error rate (WER) for the model
outputs. We calculated WER as follows:

WER =
WS +WD +WI

WN
, (5)

where WN is the total number of words in the ground truth.
WS , WI , and WD represent the number of words substituted
for wrong classifications, inserted for those not to be present,
and deleted for those to be present, respectively. A lower score
indicates higher recognition accuracy.

D. Experimental Results

We conducted experiments with a total of 10 speakers using
two different datasets to evaluate our proposed method. The



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR SPEAKERS IN
THE VOXCELEB2 DATASET. THE BASELINE REFERS TO THE PRE-TRAINED
MODEL, FT REPRESENTS FINE-TUNING WITH GLORA, AND MT DENOTES

THE PROPOSED MULTI-TASK LEARNING METHOD

Methods WER (%)

S1 S2 S3 S4 S5

Baseline 63.50 66.69 47.76 76.67 63.59

FT 61.74 61.75 44.54 74.76 64.10
+ MT 61.17 57.55 44.19 73.95 60.78

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR SPEAKERS IN

THE CUSTOM DATASET

#Data Methods WER (%)

S6 S7 S8 S9 S10

0 Baseline 31.20 16.41 21.26 71.30 58.45

60 FT 30.32 16.90 20.39 68.55 56.78
60 + MT 29.09 16.69 20.02 64.49 55.88

80 FT 28.89 15.72 20.45 60.60 53.18
80 + MT 27.31 15.51 19.64 60.11 52.45

100 FT 28.23 15.59 19.81 59.79 52.21
100 + MT 26.27 15.07 18.85 58.29 52.14

average WER over five experiments is presented in Table II for
the VoxCeleb2 dataset and in Table III for the custom dataset.
Table II shows that our proposed method improved accuracy
for all speakers. Specifically, the average WER among the five
speakers (S1-S5) decreased by 1.83% compared to the regular
fine-tuning results and by 4.09% compared to the baseline
through our multi-task learning method. For S5, although
fine-tuning resulted in lower accuracy than the baseline, our
approach effectively mitigated overfitting and achieved an
almost 3% decrease in WER.

Table III compares the performance of the fine-tuning and
multi-task learning methods across different sample sizes,
showing that the multi-task learning method consistently out-
performed the regular fine-tuning method. Using 100, 80, and
60 samples for training and validation, the average WER
among the five speakers (S6-S10) decreased by 1.00%, 0.76%,
and 1.35% compared to the fine-tuning results. The WER re-
ductions compared to the baseline results were 5.60%, 4.72%,
and 2.49%, respectively. Furthermore, for S6-S8, the multi-task
learning method with 80 samples achieved better accuracy than
the fine-tuning method even when using 100 samples. These
results demonstrate that our approach promotes more efficient
utilization of the target speaker data.

Next, we discuss the variations in recognition accuracy
from two perspectives: environmental differences between the
VoxCeleb2 and custom datasets and individual differences
among speakers within the custom dataset. In the VoxCeleb2
evaluation, both the pre-trained dataset (LRS3) and the fine-
tuning dataset (VoxCeleb2) consist of public speech sourced
from the Internet. In contrast, the custom dataset evaluation in-
volves significant environmental differences, as the fine-tuning

TABLE IV
ABLATION STUDY RESULTS FOR SPEAKERS IN THE CUSTOM DATASET. TT

DENOTES THE TEMPORAL TRANSFORMATION PROCESS

Methods WER (%)

S6 S7 S8 S9 S10

Baseline 31.20 16.41 21.26 71.30 58.45

FT 28.23 15.59 19.81 59.79 52.21
+ TT 27.12 16.11 19.59 59.29 53.13
+ TT + MT (6th layer) 26.10 15.21 18.90 58.69 52.37
+ TT + MT (12th layer) 26.27 15.07 18.85 58.29 52.14

dataset was collected using a smartphone camera in private
settings, differing from the pre-trained datasets (LRS3 and
VoxCeleb2). Our multi-task learning approach proves effective
for both datasets, demonstrating robustness to various environ-
ments. Focusing on Table III, despite identical speech content
across different speakers, notable performance variations were
observed due to individual differences in lip movements. Addi-
tionally, speakers with poorer baseline performance exhibited
greater accuracy improvements through the multi-task learning
method. These results show that our approach can mitigate
undesired learning behaviors and adapt the VSR model to the
diverse lip features of individual speakers.

Table IV presents the results of the ablation study conducted
on the custom dataset using 100 samples for training and vali-
dation. We assessed accuracy changes under the following con-
ditions: (1) applying only the temporal transformation process
without the discriminator, (2) applying the discriminator to the
output from the 6th layer of the conformer encoder, and (3)
applying the discriminator to the output from the 12th layer of
the conformer encoder (as shown in Table III). The effect of the
temporal transformation varied among speakers. It improved
accuracy for S6, S8, and S9 compared to the fine-tuning results,
but S7 and S10 experienced a decline. For these latter speakers,
using temporally transformed data without the discriminator
might have introduced noise into the learning process of the
target speaker’s identity features. Applying the discriminator
to the 6th layer consistently achieved higher accuracy than
using only the temporal transformation process. There was no
significant difference between applying the discriminator to the
6th and 12th layers; still, a slight improvement in accuracy was
observed when applying it to the 12th layer, excluding S1.

V. CONCLUSION

We proposed a novel speaker adaptation method to improve
accuracy for speakers not included in the training data using
only minimal data. Specifically, we presented a multi-task
learning approach to suppress overfitting to the specific speech
content and promote efficient learning of disentangled dynamic
identity features. Through extensive experiments with various
speakers, we demonstrated that our proposed method consis-
tently outperformed conventional fine-tuning methods across
datasets from two different scenarios, even under challenging
conditions. Our future work includes applying the proposed
method to various existing VSR models and examining its
effectiveness for speakers with more diverse lip features.
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