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Abstract- Numerous studies have indicated the potential 

involvement of seismic-ionospheric precursors (SIPs) in 

catastrophic earthquakes. These SIPs have been extensively 

analyzed in terms of characteristics such as the degree of 

decrease or increase, timing of occurrence, and duration, 

with a specific focus on electron density or total electron 

content (TEC). While deep neural networks have 

demonstrated remarkable accuracy in various applications, 

their capability to estimate SIPs has been severely limited. 

In this study, we developed a novel AI prediction model for 

forecasting SIPs based on a six-channel data sequence: 

TEC, median TEC, lower bound TEC, upper bound TEC, 

positive polarity, and negative polarity. To leverage the 

power of deep learning image classification methods, we 

treated this data as a six-dimensional image. This approach 

yielded a maximum accuracy of 67.1 percent. 

I. Introduction 

Seismo-Ionospheric precursors (SIPs), occurring before 

large earthquakes, have been well-documented in previous 

studies [1],[2],[3]. These notable anomalies typically appear a 

few days prior to major earthquakes [2],[4],[5]. In this study, 

we employ a deep learning technique to detect SIPs by 

analyzing temporal variations in the ionosphere. The 

experiment is focused on the Japan region due to its high 

frequency of earthquakes (over 1000 events with magnitudes 

larger than 5.0) between 1999 and 2021. 

II. Data analysis 

The Center for Orbit Determination in Europe (CODE) 

utilizes spherical harmonics expansion and VTEC (vertical 

total electron content) observations from several hundred 

ground-based GNSS receiving stations to generate the global 

ionospheric map (GIM) [6]. The GIM offers a comprehensive 

global distribution of ionospheric VTEC, covering latitudes 

from 87.5 degrees to -87.5 degrees and longitudes from -180 

degrees to 180 degrees. It provides a latitude resolution of 2.5 

degrees and a longitude resolution of 5 degrees. With hourly 

updates, the GIM enables monitoring of global ionospheric 

variations and analysis of the ionospheric horizontal structure. 

For our analysis, we have selected the location at 36.5N and 

142E for GIM TEC assessment. 

For deep learning training, we utilize six categories: TEC, 

median TEC, lower bound TEC, upper bound TEC, positive 

polarity, and negative polarity. Each category is structured as a 

matrix with dimensions of 24 hours * 30 days. The 24-hour 

resolution data represents the TEC values for each hour of the 

day, while the 30-day duration signifies the data collected in the 

30-day period leading up to the earthquake. The TEC category 

represents the GIM TEC at the selected location, providing the 

ionospheric conditions prior to the earthquake. The median 

TEC represents the median TEC value calculated from the 

previous 15 days, serving as a reference state for the 

ionosphere. The upper bound and lower bound TEC correspond 

to the boundaries of ionospheric anomaly TEC values, as 

defined by the following equations, 

UB=M+k(UQ-M). 

LB=M-k(M-LQ). 

, which UB is TEC upper boundary, LB is TEC lower 

boundary, M is the median TEC of the previous 15 days, UQ is 

the third quartile TEC of the previous 15 days, LQ is the first 

quartile TEC of the previous 15 days, and k is threshold 

constant. The positive and negative polarities represent 

ionospheric states that exceed or fall below the upper or lower 
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boundary, respectively, indicating positive and negative 

ionospheric anomalies. The six categories utilized in this study 

consist of the ionospheric state (TEC), ionospheric reference 

(median TEC, lower bound TEC, upper bound TEC), and 

ionospheric anomaly polarity (positive polarity, negative 

polarity). This comprehensive set of categories is well-suited 

for training a deep learning model to accurately classify SIAs 

features. 

III. Experiment and Methods: 

1. Proposed Method: 

This study explores the application of EfficientNetV2 [7], 

a highly advanced image classification method, for a binary 

classification task. The original EfficientNetV2 model was 

slightly modified to suit the specific requirements of this task. 

The modifications included adjusting the "strides" parameter in 

the first stem convolution and the first block to one. This 

modification allows the model to capture more detailed 

information in the initial stages before down sampling, 

enhancing its ability to extract relevant features. To mitigate 

overfitting, the model was equipped with high dropout 

regularization layers. For binary classification, the sigmoid 

function was employed as the activation function in the final 

output layer. 

To compare the performance of the modified 

EfficientNetV2 with other methods, a range of models was 

selected, varying from lightweight to highly effective. The 

lightweight model chosen was MobileNetV3-Large [8], while 

popular methods such as VGG16 [9], DenseNet121 [10], and 

ResNet50 [11] were also included. Additionally, ConvNext 

[12] and ResNet-RS [13], which are state-of-the-art 

convolutional neural networks for classification tasks, were 

incorporated. By including these diverse models, the study 

aimed to provide a comprehensive assessment of the 

performance of the modified EfficientNetV2 in comparison to 

established and state-of-the-art approaches for classification 

tasks. 

2. Experiments: 

2.1. Data Preprocessing: 

For this study, we conducted a random selection of 2356 

samples. These samples were divided equally into two groups: 

normal events and SIPs events. Each sample is represented by 

a 30x24x6 array, indicating a time series with six channels. To 

approach the problem as an image classification task, we 

treated the time series data as a 6-channel image array. This 

means that each channel of the time series corresponds to a 

particular aspect or feature, much like the different color 

channels in an image. 

To input the data into the model, we resized the 30x24 

array to 32x32. When resizing, we added zero padding to 

maintain the aspect ratio between the width and height of the 

data. By resizing the data to 32x32, we transformed the time 

series to a format compatible with image-based models so that 

they could take advantage of the image classification 

capabilities of convolutional neural networks (CNNs). 

Figure 1. A sample of the dataset (30x24x6) 

2.2. Data augmentation: 

CutMix [14] and Mixup [15] are widely employed image 

augmentation techniques in deep learning for enhancing model 

performance and generalization. CutMix combines cutout [16] 

and mixup methods by replacing a portion of an image with a 

patch from another, introducing diversity and perturbations. On 

the other hand, Mixup blends pairs of images and their 

corresponding labels. These techniques effectively improve 

model regularization and generalization, and they have found 

extensive usage in various computer vision tasks. 

2.3. Data division:  

We divided the data into three groups: Test, Validation, 

and Training. Initially, we randomly assigned 20 percent of the 

data to the test set. The next 10 percent were allocated to the 

validation set, while the remaining data were designated for the 

training set. 
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Figure 2. Cutmix augmentation 

 

Figure 3. Mixup augmentation 

2.4. Experiment setting: 

In this study, we implemented the following approach: We 

initialized all models with pre-trained ImageNet weights and 

set the input size to 32x32x6. Each model underwent ten 

training iterations, with each iteration comprising 80 epochs. 

Throughout the training process, we utilized the Adam 

optimizer with a learning rate of 1e-4 and employed binary 

cross-entropy loss, which is commonly used for binary 

classification tasks. Following the ten training iterations, we 

selected the best-performing model and conducted a 

comparative analysis using the test data.  

In the second experiment, we utilized the same settings and 

compared the utilization of CutMix and Mixup augmentations 

in combination with our method. 

3. Results: 

Table 1. Comparison with state-of-the art methods on Test Set 

Models 
ResnetRS

50 
ResNet50 VGG16 

DenseNet

121 

Mobinet_

v3 

Efficient

Net-v2 
ConvNext 

Accuracy 0,6208 0,6186 0,5826 0,6123 0,5530 0,6716 0,5000 

 

Among the models evaluated in our study, the modified 

EfficientNet-v2 demonstrated the highest performance with an 

accuracy of 0.6716. It outperformed the other models, 

including Resnet-RS50 (accuracy of 0.6208) and its 

predecessor ResNet50 (accuracy of 0.6186). DenseNet121 

achieved an accuracy of 0.6123, VGG16 had an accuracy of 

0.5826, and MobinetV3-Large had an accuracy of 0.5530. 

However, it is worth noting that the ConvNext model did not 

effectively converge during the experiment.  

Overall, our study demonstrates the superior performance 

of the modified EfficientNet-v2, followed by Resnet-RS50 and 

ResNet50, while noting the convergence issues encountered by 

the ConvNext model. 

 

 
Figure 4. The confusion matrix 

The Figure 4 present the confusion matrix of the 

efficientNet-v2. 
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Table 2. Comparison with the use of Cutmix and Mixup Augmentation 

Num of 

Experiment 

EfficientNet-V2 

Cutmix+Mixup 

EfficientNet-V2 

 

1 0.6504 0,6398 

2 0.6292 0,6335 

3 0.6186 0,6356 

4 0.6504 0,6102 

5 0.6377 0,6398 

6 0.6186 0,6229 

7 0.6462 0,6483 

8 0.6462 0,6144 

9 0.6335 0,6716 

10 0.6271 0,6314 

Avg ± std 0.6358 ± 0.012 0.6348 ± 0.017 

 

Table 2 demonstrates the significance of the CutMix and 

Mixup augmentation methods. While they did not directly 

improve the performance to achieve the new best result, they 

contributed to enhancing the stability of the performance. This 

improvement was observed not only in the average results but 

also in reducing the standard deviation, indicating a more 

consistent performance. 

 

IV. Conclusions: 

In this study, we propose an image representation 

approach for SIPs time sequence data, achieving a promising 

performance of 0.67 despite the limited data availability. To the 

further enhance our methodology; we intend to explore 

enhancement techniques, self-supervised and unsupervised 

methods, as well as meta-learning approaches. These strategies 

aim to improve the model's capability to work with limited data 

and enable its application in real-world domains. 
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