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Abstract—This paper proposes a large-capacity but inference-
efficient source separation model that considers input mixtures.
Convolutional neural networks (CNNs) are fundamental elements
for building robust separation models, and CNN-based separation
models are yet attractive in their lower computational complexity
than recent competitive separation models. One premise of these
models is that a single kernel is applied to the input at each
convolution. This does not take into account different input
mixtures, such as those with speakers of the same or different
genders, resulting in suboptimal separation performance. To
overcome the issue, the proposed method employs an input-
dependent convolution called conditionally parameterized convo-
lution (CondConv) for CNN-based separation models. CondConv
contains multiple kernels and generates an aggregated single
kernel depending on the input. This can increase the network
capacity while maintaining the computation complexity during
inference as a standard convolution, enabling separation models
to account for the input mixtures. Through the experimental
evaluations under a speech separation task, the proposed input-
dependent convolution approach consistently improves several
CNN-based separation models while maintaining a negligible
increase in inference.

I. INTRODUCTION

Source separation is a technique for separating the underly-
ing source signals present in an observed mixture signal, and it
has various practical applications. Especially in single-channel
source separation, where observed signals are obtained from a
single microphone, significant progress has been made owing
to the continuous growth of deep neural networks (DNNs).

As one of the most successful separation models, Conv-
TasNet [1] is a well-known approach that designs an encoder-
separator-decoder framework and constitutes them with convo-
lutional neural networks (CNNs), achieving source separation
in the time domain. For other successful separation models,
dual-path modules introduce an efficient way to model long-
form signals [2], and band-split architectures bring full-/sub-
band modeling of signals [3]. These separation models were
initially based on recurrent neural networks (RNNs), but they
have been further developed by introducing more sophisticated
architectures such as Transformers [4] and state-space models
(SSMs) [5], [6], achieving state-of-the-art performances [7]–
[9]. Although it is no longer easy to outperform novel com-
petitive separation models, CNN-based separation models [10],
[11], including Conv-TasNet, are yet attractive in their lower
computational complexities in developing lightweight and low-
latency systems.

Convolutional layers play a pivotal role in CNN-based sep-
aration models, where a single kernel is applied to individual

inputs. On the other hand, a wide variety of source mixtures
can appear as mixtures to input the separation models. For
example, in speech mixtures between two speakers, mixed
speech can be obtained from speaker pairs of the same gender
(intra-gender) or different genders (inter-gender). In intra-
gender speaker mixtures, the speakers of a mixture signal have
closely overlapped pitch ranges and convolution kernels are
desired to distinguish the differences. These kernels, however,
are inappropriate for inter-gender speaker mixtures because
it is possible to overseparate the components from a single
speaker. The converse case can happen vice versa. In such a
situation, convolutional layers cannot handle different types of
input mixtures separately, which may fail to transform hid-
den representations and lead to suboptimal separation model
performance.

To overcome this limitation, we propose to employ condi-
tionally parameterized convolution (CondConv) [12], one of
input-dependent convolution approaches [12]–[14], for CNN-
based separation models. CondConv consists of multiple ker-
nels and a routing module to generate linear combination coef-
ficients according to the input. An aggregated single kernel is
then generated as a linear combination of the multiple kernels
and applied to the input. This enables convolutional layers to
use different kernels for each input, and separation models can
be expected to separate individual input mixtures effectively.
Furthermore, since CondConv uses a simple routing module
and aggregates not input but kernels, the computational cost is
almost equivalent to a standard convolution while retaining a
more extensive network capacity.

II. PRELIMINARIES: CNN-BASED SEPARATION MODELS

We begin with formulating a single-channel source separa-
tion problem addressed in this paper and then overview the
convolutional encoder-separator-decoder architecture. Since
the proposed method is based on CNN-based separation mod-
els, we use Conv-TasNet to provide a simple description.

A. Problem Formulation

Suppose that there is a single microphone that receives a
mixture signal consisting of J source signals. Let sj [n] and
x[n] be the waveform samples of the j-th source signal and the
observed signal, where n ∈ {1, . . . , N} is the sample index in
the time domain. The observed signal is written as:

x[n] =
∑J

j=1
sj [n]. (1)



Single-channel source separation problem is the task of sepa-
rating out each source signal sj [n], j ∈ 1, . . . , J given a single-
channel mixture signal x[n].

B. Encoder-Separator-Decoder Architecture

Before feeding into a convolutional encoder, an observed
mixture signal is first divided into overlapped segments of
length L, denoted as x(t) ∈ RL, where t ∈ {1, . . . , T}
represents the frame index and T is the total number of
segments.

Each mixture segment x(t) is encoded by a one-dimensional
convolutional layer with a learnable weight B ∈ RN×L:

h(t) = H(Bx(t)), (2)

where H(·) represents an arbitrary activation function such as
rectified linear unit (ReLU) [15].

Encoded representation h(t) ∈ RN is then fed into a separa-
tor network, e.g., temporal convolutional network (TCN) [16]
in Conv-TasNet, to estimate masks mj(t) ∈ RN . The TCN
consists of repeated stacks of dilated convolutional blocks
with exponentially increasing dilation factors. Each block is
composed of three-layer convolutional networks, where the
first and last layers are pointwise convolutions and the middle
layer is a depthwise convolution with dilation1. Given an
input einput, each block outputs the transformed representation
eoutput:

eoutput = (PConv ◦ g ◦ DConv ◦ g ◦ PConv)(einput), (3)

where ◦ represents the composition of functions, and
g(·) represents a composite function of parametric ReLU
(PReLU) [17] and layer normalization [18]: g(e) =
(LayerNorm ◦ PReLU)(x).

The latent representations of each source signal are predicted
by: vj(t) = mj(t) ⊙ h(t), where ⊙ represents element-
wise multiplication. The estimated representation vj(t) ∈ RN

is decoded into a source segment with a one-dimensional
transposed convolutional layer with a parameter U ∈ RL×N :

ŝj(t) = Uvj(t), (4)

Finally, separated signals are obtained by applying overlap-
add to waveform segments.

III. PROPOSED METHOD

In the proposed method, we adapt CondConv to the con-
ventional CNN-based separation models. Furthermore, we also
present an accelerating approach for GPU computing.

1Although the original Conv-TasNet contains a skip connection branch in
each block [1], we omit it for simplicity. Indeed, we validated that the skip
connection did not help significantly improve performance in our preliminary
experiments.

A. Conditionally Parameterized Convolution (CondConv)

CondConv differs from a standard convolution in that it
contains multiple kernels and an additional routing module.
Let x and Wk, k ∈ {1, . . . ,K} be the input and k-th kernel
of a CondConv, respectively.

CondConv aggregates each kernel Wk to generate a single
kernel by a linear combination:

f(x;W1, . . . ,WK) =
(∑

k
αk(x)Wk

)
∗ x, (5)

where αk(·) is an input-dependent scalar weight computed
from the routing module. K is the number of experts since
CondConv is equivalent to a mixture of experts (MoE) formu-
lation as follows:(∑

k
αk(x)Wk

)
∗ x =

∑
k
αk(x) (Wk ∗ x) . (6)

Thus, this implies that CondConv has the same capacity as the
MoE model.

For the routing module, we design a network composed
of global average pooling, dropout, and fully-connected layer,
and routing weights α1(x), . . . , αK(x) are obtained through a
sigmoid function:

α1(x), . . . , αK(x) = (Sigmoid ◦ r)(x), (7)

r(x) = (FC ◦ DropOut ◦ GlobalAveragePool)(x). (8)

Since it is possible to replace the standard convolutional
layers in CNN-based models with CondConvs, a convolutional
encoder eq. (2) can be rewritten as follows:

h(t) = H
(∑

k
[βk(x(t))Bk]x(t)

)
, (9)

where, βk(·) and Bk represent k-th routing weight and learn-
able weight, respectively. Similarly, a convolutional decoder
eq. (4) can be reformulated as follows:

ŝj(t) =
∑

k
[γk(x(t))Uk]vj(t), (10)

where, γk(·) represents the k-th routing weight, and Uk

denotes k-th learnable weight of the convolutional decoder. For
the separator, it is also possible to replace the convolutional
layers in the same manner.

B. Implementation

It is worth noting that since the routing weights in CondConv
depend on input samples, it is required repeated convolution
operations for minibatch data during training. One way to
perform CondConv is to apply convolutions sample by sample,
however, we found this causes slow training. To fully receive
fast GPU computing, we develop a modified algorithm using
a group convolution.

Fig. 1 shows a comparison of the algorithms using a naive
convolution and a group convolution. In the naive convolution
approach, it is required to repeat the CondConv operation with
the same number of batch sizes, which is inefficient in GPU
computing and results in a bottleneck during training.
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Fig. 1: Comparison of algorithms using (a) naive convolution
and (b) group convolution.

Focusing on the fact that every CondConv operation in Fig. 1
(a) are independent of each other, CondConv operations can
be regarded as a large group convolution (Fig. 1 (b)) [19],
[20]. This implementation is beneficial for GPU acceleration,
enabling fast training.

IV. EXPERIMENTAL EVALUATION

A. Settings

The proposed approach was experimentally evaluated under
a speaker separation scenario where the task is to separate
out two sources from single-channel mixture signals. We used
the WSJ0-2mix dataset [21], a popular dataset to benchmark
monaural speaker separation systems. WSJ0-2mix uses sam-
ples from the WSJ0 corpus and is composed of 20000, 5000,
and 3000 two-speaker mixtures in the training, validation,
and test sets, respectively. The speakers in the training and
validation sets are disjoint from those in the test set. For each
mixture, two utterances are overlapped, and mixed with at
random signal-to-noise ratios (SNRs) in the range [−5, 5] dB.
In the evaluation, the sampling rate of each mixture was down-
sampled at 8 kHz.

We chose CNN-based separation models, Conv-TasNet [1],
SuDoRM-RF [10], and its lightweight variants (SuDoRM-
RF++ and SuDoRM-RF++GC) [11] as the baseline models
and developed the proposed method by replacing standard
convolutional layers in these models with CondConv layers.
SuDoRM-RF and its variants are CNN-based efficient separa-
tion models, where each separator uses the stacks of U-net-
like network architecture [22]. For the Conv-TasNet model,
we used espnet implementation2 and training recipe. For the
other models, we used official implementation3. For CondConv
layers, we set the number of experts at four, and the dropout
rate was set to 0.2. All the models were trained with four-
second segments, and the Adam optmizer [23] with an initial
learning rate of 0.001 was used. We used the negative scale-
invariant signal-to-distortion ratio (SI-SDR) [24] as the loss
function, and utterance-wise permutation invariant training
(PIT) was used to solve the permutation problems [25].

2https://github.com/espnet/espnet
3https://github.com/etzinis/sudo rm rf

TABLE I: Comparative studies for (a) modules, (b) network
sizes, and (c) layers, where bold values represent the best
separation performance.

(a) Comparison of encoder (Enc.), separator (Sep.), and decoder
(Dec.) modules with (✓) or without (✗) CondConv.

Enc. Sep. Dec. # Params [M] # MACs [G/s] SI-SDRi [dB]

✗ ✗ ✗ 8.71 7.02 15.63
✗ ✗ ✓ 8.73 7.02 16.21
✗ ✓ ✗ 34.78 7.03 15.90
✗ ✓ ✓ 34.80 7.03 16.07
✓ ✗ ✗ 8.73 7.02 15.69
✓ ✗ ✓ 8.74 7.02 16.29
✓ ✓ ✗ 34.80 7.03 16.40
✓ ✓ ✓ 34.81 7.03 16.82

(b) Comparison of separation models using standard convolutions
(Conv) with large network size and using CondConv.

Method # Params [M] # MACs [G/s] SI-SDRi [dB]

Conv 8.71 7.02 15.63

Conv 4x 34.84 28.07 15.85
CondConv 34.81 7.03 16.82

(c) Comparison of separation models using various CondConvs,
where the values in brackets represent the numbers of experts.

Method # Params [M] # MACs [G/s] SI-SDRi [dB]

Conv 8.71 7.02 15.63

CondConv (1) 8.75 7.02 15.78
CondConv (2) 17.44 7.02 16.00
CondConv (4) 34.81 7.03 16.82
CondConv (8) 69.56 7.04 16.28
CondConv (16) 139.05 7.05 16.12

As the evaluation metrics, we used the SI-SDR improve-
ments (SI-SDRi) to evaluate the separation performance. We
also investigated the multiply-accumulate operations (MACs)
for one-second input to estimate computational efficiency and
used torchprofile4.

B. Results

We first investigated the proposed CondConv approach using
Conv-TasNet. TABLE I shows a comparison of Conv-TasNet
models using standard convolutions and CondConvs.

1) Comparison of module-level replacements: In our com-
prehensive evaluation, we examined the encoder, separator, and
decoder by replacing the convolutional layers with CondConvs.
We found that, although replacing the encoder with CondConv
has little effect, replacing the separator and decoder is effective.
Moreover, replacing all the modules was the most effective,
and we applied CondConv to all the convolutional layers in
the following evaluation.

2) Comparison with models of similar size: To clarify the
performance when compared with models of the same size, we
compared the proposed CondConv approach with a large Conv-
TasNet model. The conventional large Conv-TasNet performs
better than small Conv-TasNet, but the computational cost is

4https://github.com/zhijian-liu/torchprofile
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TABLE II: SI-SDRi [dB] for mixtures from intra-gender
and inter-gender speaker pairs, where the values in brackets
represent the differences between methods.

Method Intra-gender Inter-gender Total

Conv 14.54 (±0.00) 16.69 (±0.00) 15.63 (±0.00)
CondConv 16.05 (+1.51) 17.56 (+0.87) 16.82 (+1.19)
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(d) Mean difference of inter-gender speaker pairs from total pairs.

Fig. 2: Visualization of routing weight statistics of the last
CondConv layers at each TCN block: (a) mean, (b) standard
deviation and mean differences of (c) intra-gender and (d)
inter-gender speaker pairs from total pairs.

linearly increased. On the other hand, the proposed CondConv
approach achieves not only better separation performance than
large Conv-TasNet but also maintains similar computational
costs as small Conv-TasNet.

3) Comparison with the number of experts: We compared
CondConvs with different numbers of experts, where the
numbers of experts were set as {1, 2, 4, 8, 16}. It is found
that the separation performance tends to be improved when
increasing the number of experts. On the other hand, it was
also found that too many experts did not necessarily provide
significant improvement. This might be because the network
capacity became too large, making the training difficult. The
CondConv, with four experts, achieved the best results, and we
used the same number of experts in the following experiments.

We next analyzed how the proposed approach improves
separation performance. TABLE II compares separation perfor-
mances for different types of two-speaker pairs. The proposed
approach consistently improves performance. When comparing
different speaker pairs, the proposed method contributes more
to improving performance for intra-gender cases.

Visualization of the routing weights for each TCN block
in Conv-TasNet using CondConv is shown in Fig. 2, where
the horizontal axis represents the block index and the vertical

TABLE III: Comparison with other separation models

Method # Params [M] # MACs [G/s] SI-SDRi [dB]

DPRNN [2] 2.6 42.2 18.8
SepFromer [26] 26.0 59.5 20.4
TF-GridNet [7] 14.5 231.1 23.5
SPMamba [8] 6.1 N/A †22.5
DPMamba [9] 59.8 N/A 24.4

Conv-TasNet
Conv 8.71 7.02 15.63
CondConv 34.81 7.03 16.82

SuDoRM-RF
Conv 2.66 10.60 16.70
CondConv 10.27 10.61 16.80

SuDoRM-RF++
Conv 2.72 9.11 16.29
CondConv 10.59 9.12 16.33

SuDoRM-RF++GC
Conv 0.30 3.33 13.19
CondConv 1.14 3.33 14.27

†https://github.com/JusperLee/SPMamba

axis represents the expert index. In the shallow block, routing
weights have a small standard deviation, and similar weights
are used for all experts, which is consistent with the previous
finding that replacing the encoder with CondConv has little
improvement. In the deeper block, routing weights tend to vary.

We compare the routing weights for mixtures of intra-
gender and inter-gender speaker pairs (Fig. 2 (c) and (d)).
As described above, routing weights in shallow blocks show
similar activation patterns in both intra-gender and inter-gender
cases. Meanwhile, routing weights in deeper blocks get active
and vary depending on each expert. Furthermore, we can see
that some of the experts behave complementary depending on
the type of speaker pairs. This demonstrates that the proposed
CondConv approach takes input mixtures into account.

We finally evaluated the proposed approach for different
CNN-based methods and compared it with novel competitive
separation models, and the results are shown in TABLE III.
We can see that the recent state-of-the-art separation models
achieve sufficient separation performances. In contrast, CNN-
based separation models achieve at least four or more times
lower computational costs than these powerful models. We
also find that the proposed CondConv approach consistently
achieved better performance in all the CNN-based models,
though performance improvements depend on separation mod-
els. Hence, the proposed approach has a large potential to boost
the existing separation models.

V. CONCLUSIONS

This paper presented an input-dependent convolution ap-
proach for CNN-based source separation models. The proposed
method employs CondConv and replaces the standard convo-
lutional layers in separation models, enabling the models to
increase the network capacity while maintaining the compu-
tation complexity during inference. Through the experimental
evaluation under a two-speaker separation task on WSJ0-2mix,
the proposed method consistently improved performance for
various separation models, demonstrating that it considers the
mixture’s input types during separation.
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