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Abstract—We propose NecoBERT, a self-supervised learning
(SSL) model to extract speech features containing semantic
and acoustic information. Unsupervisedly learned representations
using massive speech data, such as SSL and neural audio codec
(NAC) features, are essential for developing speech foundation
models. However, because conventional methods typically capture
one specific aspect of speech, i.e., semantic or acoustic informa-
tion, the learned features are not always suitable for complicated
downstream tasks. NecoBERT addresses this issue by masked lan-
guage modeling similar to HuBERT on NAC-derived rich acoustic
features, enabling the acoustic features to represent semantic
information as well. We evaluate NecoBERT on recognition tasks
taken from the SUPERB benchmark and speech resynthesis tasks.
The results show that although NecoBERT does not outperform
HuBERT in some recognition tasks, it performs superiorly in
speaker verification and speech resynthesis.

I. INTRODUCTION

Speech pretraining using massive data is essential for the de-
veloping speech foundation models, i.e., universal spoken lan-
guage processing (SLP) models [1]. One mainstream approach
is self-supervised learning (SSL) [2]–[4], which trains large
deep neural networks (DNNs) as a function to extract speech
features useful for various downstream tasks [5]. The core
technology is to learn mainly phonetic or semantic information
from speech [6] during pretraining with context modeling,
such as masked language modeling (MLM) [7] and contrastive
learning [8]. Another approach is speech reconstruction to
extract latent variables related to acoustic properties of speech.
Neural audio codec (NAC) [9] is a typical example of this
approach, which aims to compress input audio using residual
vector quantization (RVQ) [10] and adversarial training [11]
while losing as little of the fidelity of the original audio as
possible.

Following the success in many speech recognition tasks
covered by the SUPERB benchmark [5], SSL techniques have
been transferred to speech generation tasks [12]–[14]. For
instance, SSL features have recently been used as speech
representations for speech synthesis, instead of traditional
acoustic features such as mel-spectrograms [15], [16]. Per-
forming k-means clustering [17] of speech features derived
from a pretrained SSL model, e.g., HuBERT [3], enables us to
define discrete speech tokens that can be used as intermediate
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Fig. 1: Differences between (a) conventional HuBERT and (b)
proposed NecoBERT.

representations used for speech synthesis [14]. Although high-
fidelity speech synthesis involves modeling of both linguistic
and non-/para-linguistic information, previous methods often
suffer from poor intelligibility or unnatural prosody and thus
result in the low fidelity of generated speech [18], [19].
This issue hinders potential applications of learned speech
representations in more practical and complicated SLP tasks
such as the modeling of spoken dialogue [20].

To this end, we propose NecoBERT (Nerual audio codec
BERT), an SSL model aimed at modeling both semantic
and acoustic features of speech. Unlike the conventional Hu-
BERT [3] which relies on the results of k-means clustering on
mel-frequency cepstrum coefficients (MFCC), NecoBERT is
trained to predict speech tokens quantized by a pretrained NAC
model, as shown in Figure 1. This training involves MLM on
NAC-derived features to contextualize them and enables the
learned features to represent semantic information extracted
from rich acoustic features. We evaluate NecoBERT in speech
processing tasks including recognition tasks [5] as well as
speech resynthesis (i.e., neural vocoding and unit-to-speech)
to investigate what kind of information the NecoBERT-derived
features represent. Our contributions are as follows.

• We propose NecoBERT, a novel speech SSL model that
can learn both acoustic and semantic features. The train-
ing code and the trained model are available online1.

• From the evaluation results of recognition tasks, we

1https://github.com/Wataru-Nakata/SSL4SpeechSynthesis
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show that NecoBERT achieves the highest performance
in speaker verification compared to NAC and HuBERT.

• From the evaluation results of speech resynthesis tasks,
we demonstrate that NecoBERT improves F0 prediction
performance and naturalness of resynthesized speech,
regardless of whether we quantize the SSL features.

II. RELATED WORK

A. Conventional SSL model: HuBERT

Despite being initially designed for automatic speech recog-
nition (ASR), SSL models have recently demonstrated re-
markable performance as feature extractors for various SLP
tasks [5]. These models undergo pretraining on abundant
speech data initially, which serves as a foundation for sub-
sequent applications across diverse downstream tasks.

HuBERT, for instance, exemplifies this process through
two pretraining iterations [3]. Specifically, it first initializes
a HuBERT model including Transformer encoders [21] with
a convolutional layer by MLM on k-means-clustered MFCCs.
Then, it refines the model through another round of MLM
on the k-means-clustered 6th layer hidden states of the initial
model.

B. NAC and its application in speech synthesis

NAC has recently been established as another approach to
discretize audio signals using DNNs trained in an unsupervised
manner. The learning process in NAC relies on the use
of an information-discretizing bottleneck in an autoencoder
structure [9], [22], [23]. By feeding an audio waveform into the
encoder part of the trained NAC (i.e., NAC encoder), acoustic
tokens descritized by an RVQ layer can be obtained.

As NAC features are expected to contain abundant infor-
mation related to the acoustic property of original audio, they
have been gathering attention as novel representations suitable
for speech synthesis [13]. However, NAC faces challenges in
capturing temporal dependencies between tokens, and there is
no guarantee that the prosody of synthesized speech can be
reproduced with high accuracy [19].

III. PROPOSED SSL MODEL: NECOBERT

In this work, we propose NecoBERT, which aims to model
both semantic and acoustic features from speech. Figure 2
shows the overall model architecture and the training flow
of NecoBERT. Our NecoBERT utilizes NAC features suit-
able for high-fidelity speech reconstruction and learns contex-
tual/semantic information from them by MLM. This strategy is
inspired by previous methods that perform MLM on pretrained
SSL features, such as vq-wav2vec [2] and w2v-BERT [24].

A. Core architecture

NecoBERT consists of a pretrained NAC encoder and Trans-
former encoder [21]. The NAC encoder takes raw speech
waveform as input and generates d-dimensional NAC latent
features X = {xn ∈ Rd|n = 1, · · · , N}, where N denotes
the number of frames in the feature. The Transformer encoder
fθ(·) parameterized by θ predicts quantized NAC features (i.e.,
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Fig. 2: Model architecture and the training flow of NecoBERT.

NAC tokens) Z = {zn ∈ N|n = 1, · · · , N} from X with the
positional encoding.

Unlike the original framework that uses not only speech
but also music and environmental sounds [23], we pretrain the
NAC on speech data only. This pretraining enables the NAC-
discretized tokens to only capture speech related information,
not general audio properties. We empirically observed that
this speech-only pretraining significantly improved the speech
reconstruction performance of NAC.

B. MLM-based token prediction training

The training of NecoBERT is based on MLM similar to that
in existing speech SSL models, which aims to learn contextual
information of speech from the NAC-derived latent features.
We adopt SpanBERT-based masking [25] following previous
work [3]. Specifically, we first select a random segment with
a length of l from a target NAC token sequence with a
probability of p and mask the selected segment. Then, we
replace the masked tokens with a learnable parameter.

C. Training objective and inference

The training loss L is defined as the cross-entropy (CE)
between the predicted and target token sequences:

L =
∑
t∈T

CE (fθ(X), Z) , (1)

where T and T denote the frame length and the set of frame
indices to calculate the loss, respectively. In the previous
work [3], calculating loss only on the masked regions was
effective in ASR tasks. However, its effectiveness in other
tasks remains unclear. To see how the model performance
differs depending on the loss calculation strategy, we prepared
two variants of NecoBERT. The first one is NecoBERT,
which is trained with loss calculated in all regions, i.e.,
T = {1, . . . , N}. The second one is NecoBERT-masked,
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which is trained with loss calculated only in masked regions,
i.e., T = {m, . . . ,m+ l} where m denotes the frame to start
the l-length masking.

After the training, we can use the last hidden state of the
Transformer encoder in NecoBERT as a speech representation.
The representation is expected to represent semantic informa-
tion extracted from rich acoustic features, such as prosody of
input speech.

IV. EXPERIMENT

In this work, we trained our NecoBERT models and eval-
uated their performance on recognition tasks and speech
resynthesis from continuous SSL features or their discretized
versions.

A. Experimental conditions

For the training, we used LibriSpeech [26] containing 960
hours of English multi-speaker speech samples from audio-
books. For NAC, we used Descript Audio Codec (DAC) [23]
and trained it on the LibriSpeech corpus for 150k steps. We
resampled all speech data to 24 kHz. For DAC parameters, we
set the downsample rate of the encoder to 2, 3, 4, 4, 5, which
resulted in downsampling of 1/480. The output of the DAC
was then set to 50 Hz at an input sampling rate of 24 kHz.
This output frequency of 50 Hz was the same as those used
in HuBERT [3], WavLM [4], and wav2vec 2.0 [2]. For other
parameters, we followed the official implementation of DAC2.

There were 12 Transformer [21] encoder layers in
NecoBERT, and their hidden sizes and number of attention
heads were set to 768 and 12, respectively. This was the same
configuration for wav2vec 2.0, WavLM-base, and HuBERT-
base models. For the speech tokens used for the output of
NecoBERT (i.e., Z), we only used the output of the first RVQ
layer of DAC. This is because pretraining DAC on speech
data only enabled the first layer to capture enough acoustic
information in speech. Furthermore, in our preliminary exper-
iments, we empirically confirmed that the use of multiple layer
quantization results (i.e., multi-stream NAC tokens) made the
pretraining unstable. Therefore, we only used output of the
first RVQ layer of DAC in this study.

For optimization, we used AdamW [27], setting its parame-
ters as β1 = 0.9, β2 = 0.999, ϵ = 1×10−6,, and λ = 1×10−2.
For the learning rate, we linearly increased it from 0 to 2×10−4

for first 40k steps and linearly decreased it from 2× 10−4 to
0 for 460k steps. The total number of training steps is 500k.
For MLM, we set the masking probability to p = 0.08 and
the length of masking to l = 10. The training took approxi-
mately two days with eight NVIDIA A100 GPUs. NecoBERT
consisted of approximately 72M and 91M parameters for the
NAC encoder and Transformer encoder, respectively.

B. Evaluation in recognition tasks

We first evaluated our NecoBERT on recognition tasks.

2https://github.com/descriptinc/descript-audio-codec

TABLE I: Evaluation results on recognition tasks. Result for
HuBERT is quoted from [5]. Bold and underlined values are
the best and worst in each task, respectively.

Task type ASR ASV ER SD

Metric WER↓ EER ↓ ACC ↑ DER ↓

HuBERT 6.42 5.11 64.92 5.88
DAC 29.8 2.60 48.31 12.99
NecoBERT 21.8 1.80 53.57 9.96
NecoBERT-masked 21.7 2.79 57.63 8.36

Task description: For recognition tasks, we used auto-
matic speech recognition (ASR), automatic speaker verifica-
tion (ASV), emotion recognition (ER), speaker diarization
(SD), and intent classification (IC) from SUPERB [5].There
tasks correspond to the recognition of content (ASR), speaker
(ASV), paralinguistics (ER and SD), and semantic information
from speech (IC). We selected these tasks to cover all task
types introduced in SUPERB and to avoid high computational
costs due to large datasets and diverse tasks [28].

Settings and metrics: For the training condition for each
task, we followed the conditions presented in the SUPERB
paper [5]. For the compared methods, we used the DAC
encoder output and the two proposed models: NecoBERT and
NecoBERT-masked described in Section III-C. We kept the
parameters of these models unchanged and only used them as
feature extractors. For NecoBERT and NecoBERT-masked, we
took a weighted sum of the hidden states in the Transformer
encoder. For the evaluation metrics, we used word error rate
(WER) for ASR, equal error rate (EER) for ASV, classification
accuracy (ACC) for ER and IC, and diarization error rate
(DER) for SD.

Results: Table I shows the evaluation results on recognition
tasks. Note that the result of HuBERT is quoted from the
original SUPERB paper [5]. From the results, we can see
that the NecoBERT improves all evaluation metrics com-
pared to the DAC. One noteworthy result is that NecoBERT
achieves the lowest EER among the compared models in-
cluding HuBERT, the best-performing model regarding ASV-
EER in the SUPERB paper. This result shows that through
MLM, NecoBERT successfully captured additional semantic
information over DAC. NecoBERT-masked performed better
than original NecoBERT in all tasks except for the ASV tasks.
One reason is that by calculating loss on only masked regions,
the MLM training becomes closer to language modeling and
thus the learned features change to contain more semantic
information rather than acoustic information [3]. Additionally,
HuBERT outperforms NecoBERT in most tasks except for the
ASV. This result indicates that the HuBERT is actually trained
to capture rich semantic information better than NecoBERT.

C. Evaluation in neural vocoding

We then evaluated NecoBERT on neural vocoding, a task
of generating speech using continuous speech representations.

Task description: To evaluate the performance on the
modeling of acoustic information, such as speaker identity and
prosody, we performed neural vocoding from the continuous
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TABLE II: Evaluation results on speech resynthesis tasks. Bold naturalness MOS values are significantly higher than the baseline
results (p < 0.05). Underlined values denote the worst-performing ones in objective evaluations.

(a) Results for neural vocoding: resynthesis from continuous speech features

Feature extraction method LogF0 RMSE ↓ MCD [dB]↓ XVector-sim ↑ Naturalness MOS ↑

Ground-truth - - - 3.82 ±0.187
Mel-spec. 2.82 2.43 0.987 3.54 ±0.222
HuBERT (baseline) 4.43 5.26 0.953 3.37 ±0.206
NecoBERT 2.71 3.24 0.976 3.67 ±0.206
NecoBERT-masked 2.73 3.41 0.975 3.79 ±0.201

(b) Results for u2s: resynthesis from discretized speech features

Feature extraction method LogF0 RMSE ↓ MCD [dB] ↓ XVector-sim ↑ Naturalness MOS ↑

Ground-truth - - - 4.06 ±0.18
DAC tokens 4.88 5.34 0.888 2.75 ±0.19
HuBERT (baseline) 7.70 7.61 0.830 1.94 ±0.17
NecoBERT 4.29 5.65 0.874 2.78 ±0.21
NecoBERT-masked 6.23 6.52 0.855 1.25 ±0.19

features obtained from the trained SSL models. For this task,
we used the HiFi-GAN vocoder [29] and trained it on the
train-clean-100, clean-360, other-500 subset of LibriTTS [30].
The evaluation data were taken from the test-clean subset
of LibriTTS. We compared mel-spectrogram (Mel-spec.) and
the last layer hidden states of HuBERT, NecoBERT, and
NecoBERT-masked as the input features of HiFi-GAN. The
mel-spectrograms were extracted from the speech with a
window length of 1024 and a hop length of 256. We added
Mel-spec. to the compared methods because it is widely used
for speech representation and as the training target in speech
synthesis. We implemented HuBERT using the official weight
of HuBERT-base distributed on Github3. This HuBERT model
was trained on LibriSpeech, the same as NecoBERT and
NecoBERT-masked.

Settings and metrics: We evaluated the quality of syn-
thesized speech using objective and subjective metrics. For
objective metrics, we used square-root mean squared error of
log F0 (LogF0 RMSE), mel-cepstrum distortion (MCD) [31],
and x-vector [32] cosine similarity (XVector-sim). These three
metrics quantify the prediction performances of prosody, vocal
timber, and speaker identity of target speech, respectively. We
used the WavLM-base speaker verification model available on
huggingface4 to extract the x-vector from speech. We used
WORLD vocoder [33] for the F0 analysis. For subjective
metrics, we used naturalness mean opinion score (MOS).
For this metric, we employed native English speakers via
crowdsourcing using Prolific5 and asked them to rate how
natural the presented speech was on a 5-point scale from 1
(very poor) to 5 (very good). There were 60 raters, and each
rater evaluated 10 samples.

Results: Table IIa shows the evaluation results on neural
vocoding using continuous SSL features. From the objec-
tive evaluation results, Mel-spec. achieved the best MCD

3https://github.com/facebookresearch/fairseq/blob/main/examples/hubert/
README.md

4https://huggingface.co/microsoft/wavlm-base-plus-sv
5https://www.prolific.com/

and XVector-sim values among the compared methods. How-
ever, focusing on the LogF0 RMSE values, our NecoBERT
and NecoBERT-masked outperformed the others. This result
suggests that the NecoBERT-derived features contain richer
prosody information by contextualizing DAC-derived acoustic
latent variables. From the subjective evaluation results, there
were no statistically significant differences between Ground-
truth, Mel-spec., NecoBERT and NecoBERT-masked. This
result demonstrates that NecoBERT can achieve naturalness
comparable to the ground truth. On the other hand, Hu-
BERT performed the worst in this task and had significantly
worse naturalness MOS than Ground-truth, NecoBERT, and
NecoBERT-masked. This reveals that the HuBERT-derived fea-
tures lack acoustic information to reconstruct original speech
with high naturalness.

D. Evaluation in unit-to-speech (u2s)

Finally, we evaluated NecoBERT on u2s, a task of generat-
ing speech using discrete speech representations.

Task description: u2s was originally introduced in [1]
and aims to resynthesize speech from its discretized repre-
sentations. Although the descritization of speech enables us
to introduce effective methods widely used in the natural
language processing field, it may lose the fine structure of
original speech that is required for the speech reconstruction.
Therefore, we can regard u2s as a more challenging speech
resynthesis task than neural vocoding using continuous SSL
features. To evaluate the effectiveness of NecoBERT as a
speech discretization method, we conducted an evaluation in
u2s. In this task, we first extracted continuous features from
the speech using NecoBERT in the same manner as in Sec-
tion IV-C. The extracted features were then discretized using k-
means clustering. The number of clusters was set to 1,000. We
trained HiFi-GAN [29], which reconstructs the original speech
from the discretized representation, using the same training
data as described in Section IV-C. HiFi-GAN contained an
embedding layer to convert discrete representation to contin-
uous representation. The evaluation data were the test-clean
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subset of the LibriTTS corpus. We compared DAC encoder
output (DAC tokens), 6th-layer hidden state of HuBERT, 12th-
layer hidden state of NecoBERT, and 12th-layer hidden state
of NecoBERT-masked. We used the same settings and metrics
as described in Section IV-C. For HuBERT, we selected the
6th-layer hidden state following the previous work [1]. For this
task, we added DAC tokens as a compared feature extraction
method. This is because, in contrast to DAC tokens, mel-
spectrogram is unsuitable for the discretization with k-means
clustering.

Results: Table IIb shows the evaluation result on u2s. From
objective evaluation results, HuBERT performed the worst
among the compared methods, indicating that the HuBERT-
derived features are inappropriate for speech resynthesis tasks
(i.e., both neural vocoding and u2s). In contrast, DAC to-
kens performed reasonably well in this task with the best
LogF0 RMSE and XVector-sim values. This observation is
unsurprising because DAC indeed aims to learn quantized
representations of speech with high speech reconstruction
performance. Our NecoBERT performed comparably to DAC
and had the lowest LogF0 RMSE value. This result suggests
that the NecoBERT-derived features tend to capture speech
prosody better than existing SSL models and NAC by using
MLM on DAC-derived features. One noteworthy point is that
NecoBERT-masked performed significantly worse than Hu-
BERT in the subjective evaluation. This observation contradicts
the result of neural vocoding, suggesting that the latent space
of NecoBERT is more suited for discretization by k-means
than that of NecoBERT-masked. In summary, the subjective
evaluation results reveal a large gap between Ground-truth and
u2s-generated speech samples in terms of their naturalness.
Further improvement is required for speech resynthesis from
the discrete features.

V. CONCLUSION

In this work, we proposed a novel speech self-supervised
learning (SSL) model called NecoBERT. It performs masked
language modeling (MLM) on neural audio codec (NAC)-
derived features and aims to add contextual information on
rich acoustic features. We evaluated NecoBERT on recognition
tasks and speech resynthesis. The results showed that the while
it performed worse in some recognition tasks, it performed bet-
ter at speech resynthesis than conventional methods leveraging
unsupervised learning with massive speech data. Future work
includes developing a better discretization method suitable for
our NecoBERT and evaluating our model on more challenging
tasks such as text-to-speech.
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