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Abstract—Advanced computer vision technologies enable
nearly real-time intelligent monitoring of homes by detecting
anomalies such as falls and incidents of domestic violence, thereby
enhancing home safety. Leveraging affordable home cameras
and cloud computing services, this technology offers significant
societal benefits. However, privacy concerns present challenges
for its deployment in real-world settings. This paper introduces
a method for anomaly detection in encrypted bitstream videos.
By analyzing the video compression standard, we incorporate
new appearance information that captures variations in object
sizes alongside existing motion information, enhancing anomaly
detection capabilities. We also refine the feature extraction
process to reduce the impact of noise. Finally, we employ Gaussian
Mixture Model to model the probability distribution of the data
for effective anomaly detection. Experimental results demonstrate
that our proposed privacy-preserving anomaly detection method
achieves a commendable balance between protecting privacy and
maintaining high detection performance.

I. INTRODUCTION

As camera prices continue to decrease, video surveillance
has become increasingly prevalent, with more individuals using
it to ensure their safety, thereby driving the demand and
development of private smart monitoring services. However,
managing the enormous data volume of surveillance videos and
performing intelligent video analysis on resource-constrained
local devices is challenging. Cloud servers offer powerful
computing capabilities, mature video analysis models, and
are willing to provide users with various video analysis and
processing tasks [1] for a proper fee.

However, surveillance videos, especially home surveillance
videos, contain a significant amount of privacy-sensitive in-
formation such as personal identities, family activities, and
daily routines. The leakage of this privacy information poses
security risks to users of cloud services, making them reluctant
to upload home surveillance videos. As a result, cloud servers
face the challenging dual responsibility of respecting personal
privacy while enhancing the user experience.

Processing videos in the encrypted domain [2] is one of
the promising solutions to the aforementioned issues. Users
encrypt videos before uploading, where the cloud servers
process the encrypted videos and return the processed results
to users. However, directly encrypting raw videos entails
significant computational costs. Surveillance videos are akin
to continuous movies, generating a vast number of frames
daily. Users may not have adequate computational resources
to encrypt raw videos. Methods proposed by [3]–[6] advocate
encrypting compressed videos, greatly improving the efficiency

of video encryption and analysis. These methods compress
videos first and then encrypt the compressed bitstream, re-
ducing the amount of data that needs encryption and thereby
significantly lowering encryption costs for users.

Existing encrypted domain video analytics, such as mov-
ing object detection, have been extensively researched [4].
However, there is limited research on anomaly detection in
encrypted bitstream videos. Guo et al. [6] used motion infor-
mation from bitstreams and Adaptive Kernel Density Estima-
tion (AKDE) for anomaly detection, but their focus solely on
motion information is insufficient for complex scenes.

In this paper, we build on [6] by introducing new appearance
features that partially capture changes in object size, thereby
complementing motion information to enhance anomaly de-
tection. We observed significant noise in the information
extracted from encrypted videos, prompting us to redesign our
feature extraction method to mitigate noise impact. To address
the challenges of AKDE in handling high-dimensional data
within encrypted compressed videos, we employ a Multivariate
Gaussian Mixture Model (GMM) [7] for anomaly detection.
By inputting high-dimensional features, the model learns intri-
cate relationships between different features, thereby achieving
better anomaly detection performance. The main contributions
of this paper are as follows:
1. We introduce a new encrypted video information to comple-

ment motion information in anomaly detection by partially
representing changes in object appearance.

2. We propose new feature extraction methods and use the
Multivariate GMM to better capture potential relationships
between features.

3. Experimental results show that the proposed privacy-
preserving anomaly detection method achieves higher de-
tection accuracy than existing state-of-the-art methods on
multiple datasets.

II. RELATED WORKS

A. Anomaly Detection Methods

Traditional anomaly detection methods often utilize hand-
crafted features, such as the hierarchical Bayesian model [8],
mixture of dynamic textures [9], and sparse reconstruction
[10]. Recently, Hasan et al. [11] used a fully convolutional
autoencoder to learn normal patterns. To address the issue that
both normal and abnormal events are reconstructed well, Gong
et al. [12] introduced a memory-augmented deep autoencoder.



Yang et al. [13] used keyframes to restore video events and
explore temporal relationships within the video. Furthermore,
to enhance the speed of anomaly detection, some methods
operate directly in the compressed domain [14], [15]. However,
these methods neglect the need for privacy preservation in
anomaly detection.

B. Privacy-Preserving Anomaly Detection Methods

Cheng et al. [16] proposed a secure video anomaly detection
scheme using secret sharing and Bloom filter, but its general-
izability is limited. Yan et al. [17] masked privacy-sensitive
regions in decompressed video data to protect privacy, but
their approach is computationally complex and offers limited
privacy protection. Allahham et al. [18] utilized federated
learning techniques, but the method incurs high computational
costs, making it unsuitable for real-time processing. Guo et
al. [6] proposed an anomaly detection scheme for encrypted
compressed videos, but their scheme lacks robustness and
shows a significant performance drop in complex scenarios.
Therefore, designing a real-time and robust anomaly detection
scheme on encrypted video remains a challenging task.

III. PROBLEM STATEMENT

A. System Model

As illustrated in fig. 1, our encrypted video anomaly de-
tection system involves two main entities: The data owner,
O, possesses the original video data but has limited storage
and computational capabilities. The cloud computing service
provider, S, acts as a third-party entity offering robust storage
and computational resources at a reasonable cost to O for
video anomaly detection cloud services. By outsourcing the
video data, O can access the video data anytime, anywhere
using terminal devices such as smartphones and benefit from
the video anomaly detection cloud services. The cloud server
S performs anomaly detection tasks on the encrypted bitstream
video and returns the detection results to O. O decrypts the
results using a key to obtain the anomaly detection outcomes.

B. Threat Model

We adopt the setting established in similar literature [19],
assuming S to be a semi-honest adversary. This means S will
follow the protocol but may attempt additional computations
to access private information from the video. We employ
the video encryption scheme from [5], [20], which has been
extensively validated for its ability to protect video privacy.
Only O possesses the decryption key; S does not have access
to the key. During the execution of anomaly detection, O does
not interact with S, preventing leakage of the video’s key infor-
mation. Therefore, S cannot obtain sensitive information from
the encrypted video. Our encrypted video anomaly detection
system ensures security.

IV. PROPOSED PRIVACY-PRESERVING ANOMALY
DETECTION SCHEME OVER ENCRYPTED VIDEO

The proposed privacy-preserving video anomaly detection
framework is illustrated in fig. 2. To facilitate our discussion,
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Fig. 1. System Model

we focus on H.264 videos and use a selective encryption
scheme to encrypt the compressed bitstreams, as detailed
in [5]. It should be noted that video encryption algorithms
compatible with other formats [21], [22] are also applica-
ble to our framework. Our framework directly analyzes en-
crypted video bitstreams using compression standards, ex-
tracting entropy-coded data related to anomalies. From these
entropy-coded data, we employ statistical analysis methods to
extract abnormal behavioral characteristics for each frame in
the compressed domain. These extracted compressed domain
features serve as representations of each frame. We utilize
a Multivariate GMM to construct a probability distribution
of abnormal events and employ this distribution to detect
abnormal frames. We will now elaborate on each specific part.

A. Abnormal Information Estimation on Encrypted Video

By analyzing video compression standards, we directly ex-
tract syntax elements from compressed entropy-coded data to
reveal their correlations with abnormal behaviors. Specifically,
in addition to the three types of compressed domain abnormal
behavior information identified in [6], we introduce a new
type: residual density, which effectively captures appearance
changes associated with object size variations. Next, we will
provide detailed explanations of these four types of compressed
domain abnormal behavior information.

1) Consumed Bits: In common video compression stan-
dards, the basic coding unit is the macroblock. Video com-
pression aims to represent more content with less data, so
repetitive content is predicted to reduce the number of bits
per macroblock. In contrast, during abnormal events, affected
macroblocks often consume more bits due to unusual object
motion. Thus, the bit consumption of macroblocks implicitly
reveals information about abnormal behaviors.

Taking the example of the H.264 encoding scheme, its slice
data syntax structure is represented as:{

SH,MB′
1,MB′

2,SR3, · · · ,MB′
i, · · · ,MB′

n

}
,

where SH denotes slice header, MB′
i represents the i-th

encrypted macroblock in the slice, and SR3 indicates that the
3rd macroblock is a skipped macroblock.



Consumed Bits

Partition Level

MVD Magnitude

Residual Density

Encrypted Video

Total Sum

Top-k Sum

Top-k Variance

Multivariate GMM

Abnormal Frames

Normal Frames

Fig. 2. Overview of proposed framework

The number of bits consumed bi(t) by the i-th macroblock
in frame t is calculated as:

bi(t) =


0, skipping MBi,

S(SRi+1)− S(MB′
i), skipping MBi+1,

S(MB′
i+1)− S(MB′

i), otherwise,
(1)

where S(·) denotes the starting address in the bitstream.
2) Partition Level: In compressed videos, bi in I-frames is

generally significantly higher than in P-frames. Additionally,
the aggregation or dispersion of normal objects affects bi. Con-
sequently, relying solely on bi can result in a high false positive
rate in anomaly detection. Typically, 16×16 macroblocks can
be subdivided into smaller sub-MBs. To better capture motion
during decoding, macroblocks in abnormal areas of P-frames
may be divided into more smaller sub-MBs. For instance, a
regular macroblock might be divided into two 8×16 sub-MBs,
whereas a macroblock in an abnormal area may be divided
into sixteen 4 × 4 sub-MBs. The partition level pi(t) of a
macroblock is calculated as:

pi(t) = P (STi, MTi) , (2)

where STi denotes the slice type, MTi denotes the MB type,
and P(·, ·) calculates the number of its sub-MBs.

3) MVD Magnitude: Motion vectors (MVs) are widely used
features in bitstream-based video anomaly detection [23], [24].
However, MVs in encrypted bitstream videos are unavailable.
This paper selects MVD magnitude as a substitute for MV. In
bitstream videos, MVs are not directly encoded but indirectly
encoded by predictive motion vectors and actual motion vector
differences (MVDs). MVD consists of horizontal MVDx and
vertical MVDy components. We use the magnitude of MVDs
of a macroblock as an estimate for MVs to provide richer mo-
tion information for anomaly detection. The MVD magnitude
mi(t) of a macroblock is calculated as

mi(t) =
∑

k∈Imv(t)

⌊
√

Lk
x(t)

2 + Lk
y(t)

2⌋, (3)

where Imv(t) represents the set of addresses for 4× 4 blocks
within the macroblock, and Lk

x(t) and Lk
y(t) represent the code

word lengths of MVDx and MVDy, respectively.
4) Residual Density: Residual density has been proposed

for detecting moving objects in videos [5]. We introduce
residual density as appearance information to complement
motion-based anomaly detection. During video compression,
residual data undergoes DCT transformation, quantization, and
then entropy coding. Given a macroblock, if its DCT block
Uk
dct(t) contains δk 4 × 4 blocks, the density of non-zero

coefficients di(t) is calculated as:

di(t) =
∑

k∈Idct(t)

δk · ⌊
ρ
(
Uk
dct(t)

)
√
δk

⌋, (4)

where ρ(·) denotes the number of non-zero coefficients in a
DCT block, and Idct(t) denotes the set of DCT block addresses
within the macroblock.

B. Feature Extraction from Encrypted Compressed Videos
We extracted four types of estimated information from en-

crypted compressed videos: consumed bits bi(t), partition level
pi(t), MVD magnitude mi(t), and residual density di(t). We
use fi(t) to denote any one of these four types of information
for the i-th macroblock in frame t, and I(t) denotes the set
of macroblock addresses in frame t. Next, we consider these
informational features at the frame level, including the sum of
all macroblocks, the sum of representative macroblocks, and
the variance of representative macroblocks.

1) Total Sum: For the estimated information f(t), we com-
pute the total sum of all macroblocks in a frame as a rough
feature of that frame, which is given by:

λf
t =

∑
i∈I(t)

fi(t), (5)

2) Top-k Sum: During abnormal events, not all macroblocks
in a frame are related to anomalies. In fact, abnormal events
only involve a small number of macroblocks with prominent
features. Based on this observation, we isolate the top α
ranked macroblocks in a frame, termed representative mac-
roblocks. Considering only the information from representa-
tive macroblocks can mitigate noise interference from non-
representative macroblocks. The sum of information extracted
from representative macroblocks in a frame is considered as a
refined feature, which is computed by:

δft =
∑

i∈Iα(t)

fi(t), (6)

where Iα(t) denotes the set of addresses of the top α ranked
macroblocks in a frame.

3) Top-k Variance: Based on the identified representative
macroblocks, in contrast to [6], we consider the variance
among representative macroblocks. Since anomalies result in
increased variance among representative macroblocks, this
variance can be utilized as an additional refined feature for
anomaly detection, which is computed by:

ϕf
t =

1

|Iα(t)| − 1

∑
i∈Iα(t)

(
fi(t)− f̄i(t)

)2
, (7)

where f̄i(t) denotes the mean value of fi(t) over all represen-
tative macroblocks.

Thus, we obtain a total of 12 features:

[λc
t , λ

p
t , λ

m
t , λd

t , δ
c
t , δ

p
t , δ

m
t , δdt , ϕ

c
t , ϕ

p
t , ϕ

m
t , ϕd

t ],

which is represented collectively as [Λt,∆t,Φt]. All features
together form a high-dimensional feature that represents the
frame and is used for subsequent anomaly detection.



C. Anomaly Detection Algorithm

We use the Multivariate GMM for its ability to capture nor-
mal patterns in the data, thereby fully exploiting the potential
relationships between different features. Specifically, during
the training phase, we use the extracted features mentioned
above to construct a probability density function using Multi-
variate GMM based on the training dataset, i.e.,

xt = [Λt,∆t,Φt]
T ,

pM(xt) =

K∑
k=1

πk · N (xt | µk,Γk) ,

K∑
k=1

πk = 1, πk > 0,

(8)

where N (xt | µk,Γk) represents the probability density func-
tion of the k-th Gaussian component with mean µk and
covariance matrix Γk. K denotes the number of Gaussian com-
ponents, and πk represents the weight for the k-th Gaussian
component.

The obtained GMM provides a representation of the proba-
bility of normal behaviors in the video data. During the testing
phase, using the high-dimensional features [λt,∆t,Φt] related
to anomalies in each frame of the test video and the obtained
GMM, we can compute the probability pt of an event occurring
in that frame. Frames with low probabilities are identified
as potential anomalies, indicating deviations from the learned
normal patterns. Based on the probability of event occurrence,
the confidence st that a frame is an anomaly is computed as
follows:

st = 1− pM(xt). (9)

After obtaining the anomaly confidence for each frame, and
considering that abnormal events in videos typically develop
gradually, we apply median filtering to the confidence values.
Finally, by setting an appropriate threshold θ, frames with
confidence st ≥ θ are classified as anomalous frames, while
frames with st < θ are classified as normal frames.

V. EXPERIMENTAL RESULTS

A. Settings

The proposed privacy-preserving anomaly detection scheme
was tested on the UCSD Ped1 [9], UCSD Ped2 [9], and
CUHK Avenue [25] datasets. For convenience in processing,
we resized the video resolution to 1280×720 and set the
frame rate to 25 fps. The feature extraction was performed
with α = 4%. All experimental results were obtained using
MATLAB on a 64-bit Windows 10 PC with Intel(R) Core(TM)
i5-10400 CPU @ 2.90GHz and 16GB memory.

B. Datasets

1) UCSD Peds: The UCSD Peds [9] dataset is captured
on a campus, comprising two sub-datasets: UCSD Ped1 and
UCSD Ped2. UCSD Ped1 includes 70 videos of size 238×158,
captured from a camera with a perpendicular viewpoint to the
road, resulting in significant variations in the sizes of moving

TABLE I
AUC AND EER COMPARISON WITH DIFFERENT METHODS.

Dataset UCSD Ped1 UCSD Ped2 CUHK Avenue
Method AUC↑ EER↓ AUC↑ EER↓ AUC↑ EER↓

Kmeans [26] 0.59 0.44 0.57 0.53 0.70 0.36
iForest [27] 0.70 0.37 0.76 0.29 0.73 0.32

Guo [6] 0.69 0.38 - - 0.79 0.29
Proposed 0.72 0.35 0.81 0.24 0.80 0.26

TABLE II
PERFORMANCE COMPARISON BETWEEN PLAINTEXT AND ENCRYPTED

DOMAINS. CB AND FS REPRESENT INPUTS OF COMPRESSED BITSTREAM
AND FRAME SEQUENCE, RESPECTIVELY.

Plaintext Domain

Method Input UCSD Ped1 CUHK Avenue
AUC↑ EER↓ AUC↑ EER↓

USTN-DSC [13] FS - - 0.90 -
Kiryati [14] CB - - 0.72 0.34
Biswas [15] CB 0.79 0.24 0.69 0.34

Guo [6] CB 0.69 0.38 0.79 0.29
Proposed CB 0.72 0.35 0.80 0.26

Encrypted Domain

Method Input UCSD Ped1 CUHK Avenue
AUC↑ EER↓ AUC↑ EER↓

MVDM [6] CB 0.62 0.43 0.65 0.40
MVDF [6] CB 0.58 0.45 0.53 0.47

Guo [6] CB 0.69 0.38 0.79 0.29
Proposed CB 0.72 0.35 0.80 0.26

foreground objects. UCSD Ped2 includes 28 videos of size
360×240, captured from a camera with a parallel viewpoint to
the road, resulting in smaller variations in the sizes of moving
foreground objects. Anomalies in these datasets are related to
unexpected objects and pedestrian behaviors.

2) CUHK Avenue: The CUHK Avenue [25] dataset is
captured on a campus avenue using a camera with slight
jitter. It comprises 28 videos with a resolution of 640×320.
Anomalies in this dataset mainly involve abnormal movements
such as sudden running and littering.

C. Comparison results

We quantitatively evaluate the video results using widely
used metrics in video anomaly detection: Area Under the
Curve (AUC) and Equal Error Rate (EER), which can be
obtained from receiver operating characteristic (ROC) curves.
A higher AUC indicates better anomaly detection performance,
whereas a lower EER indicates the opposite. Quantitative
comparisons of the proposed method’s detection performance
in the encrypted domain with other methods are shown in Table
I. Corresponding ROC curves are depicted in Figure 3.

The proposed method achieves AUC values of 0.72, 0.81,
and 0.80, and EER values of 0.35, 0.24, and 0.26 on Ped1,
Ped2, and Avenue datasets, respectively. Comparisons with
Guo [6] show improvements in AUC by 3% and 1% on UCSD
Ped1 and CUHK Avenue datasets, respectively. Quantitative
comparisons demonstrate that the proposed method surpasses
Guo’s method, achieving more robust anomaly detection per-
formance.

In Table I, we also compare our method with other methods
such as Kmeans [26] and iForest [27], using features extracted
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Fig. 3. Comparison of ROC curves for different methods.

in this paper for anomaly detection. On the UCSD Ped2
dataset, our method achieves an AUC that is 5% higher than
that of the second-best method. Experimental results indicate
that the proposed method achieves state-of-the-art performance
on all three anomaly detection datasets.

In Figure 3, proposed method consistently positions above
and to the left of the ROC curves, indicating better representa-
tion of data probability distributions and thorough exploration
of potential relationships between different features, resulting
in robust anomaly detection capabilities.

We also compare our method with methods in plaintext
domain such as Kiryati [14], Bitwas [15], and USTN-DSC
[13]. Experimental results, as shown in Table II, indicate that
USTN-DSC [13], a deep learning-based method on frame
sequences, achieved the best anomaly detection performance
on the CUHK Avenue dataset due to its powerful representa-
tion capabilities using neural networks. However, our method
performs the best among methods in the compressed domain
and shows comparable performance with deep learning-based
methods. On UCSD Ped1, our method also demonstrates per-
formance comparable to similar methods in the compression
domain.

For the encrypted video, we compare our results with those
reported in [6], demonstrating that proposed method achieves
the best anomaly detection performance compared to other
methods.

D. Ablation Study
We conduct ablation experiments to evaluate the effective-

ness of residual density information for representing appear-
ance and top-k variance features. As shown in Figure III,
removing variance features and appearance information results
in a reduced AUC of 0.76 and an increased EER of 0.30 on
UCSD Ped2, highlighting the importance of these features.
Incorporating top-k variance with the three types of estimated
information improves the AUC to 0.77 and reduces the EER to
0.28 on UCSD Ped2, demonstrating the efficacy of including
variance features.

Adding appearance information alone increases the AUC
to 0.78 and decreases the EER to 0.28, highlighting the
necessity of including appearance information. By introducing
appearance information and redesigning feature extraction, the

TABLE III
ABLATION STUDIES ON UCSD PED2 DATASET

Method UCSD Ped2
Top-k Variance Residual Density AUC↑ EER↓

✘ ✘ 0.76 0.30
✔ ✘ 0.77 0.28
✘ ✔ 0.78 0.28
✔ ✔ 0.81 0.24

TABLE IV
INFLUENCE OF DIFFERENT α VALUES ON AUC AND EER ON UCSD PED2

DATASET

α 1% 2% 3% 4% 5% 6% 10%
AUC↑ 0.74 0.78 0.79 0.81 0.80 0.79 0.73
EER↓ 0.33 0.26 0.30 0.24 0.24 0.27 0.36

model achieves an AUC of 0.81 and an EER of 0.24 on
UCSD Ped2, demonstrating that both enhancements contribute
to improving model performance.

Furthermore, we examine the impact of different values of α
on the performance of representative macroblocks in anomaly
detection, as shown in Figure IV. We observe that the choice of
α significantly affects model performance. Increasing α from
a small value of 1% to 4% improves the AUC from 0.74
to 0.81. However, further increasing α results in decreased
model performance because macroblocks selected by a too
large α being influenced more by noise from regions unrelated
to anomalies. Therefore, selecting an appropriate α value is
crucial for achieving effective anomaly detection performance.

VI. CONCLUSIONS

We propose an anomaly detection algorithm for encrypted
bitstream videos based on the Multivariate GMM. To address
the limitation of existing methods, where motion information
alone is insufficient for representing anomalies, we introduce
complementary appearance information to enhance detection
capabilities. We have redesigned the feature extraction method
to reduce the impact of noise in the encrypted domain on
feature extraction. Additionally, by integrating the extracted
features with the Multivariate GMM, we develop a more ro-
bust anomaly detection model for encrypted bitstream videos,
particularly in complex scenarios. In future work, we plan



to explore end-to-end anomaly detection methods based on
deep learning for encrypted bitstream videos, aiming to reduce
reliance on manual feature design.
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