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Abstract—This paper proposes a novel model TRIDENT to
obtain better embeddings for speaker, emotion and speech
recognition. Conventional features including HuBERT are often
chosen to represent speech features for a task, however, such
the features still contain the other information irrelated to the
task. Our hypothesis is that, if we can disentangle them, better
embeddings and higher performance are expected. Our model
is designed to obtain speaker-, emotion-, and context-related
features exclusively, by enhancing HuBERT features. In addition,
these embeddings can be used to reconstruct the original features.
We carried out speaker verification, emotion recognition and
speech recognition experiments using task-specific embeddings,
respectively. The results demonstrated that our scheme could
appropriately extract features for various speech processing tasks
simultaneously, achieving enough accuracy.

I. INTRODUCTION

Speech has a lot of information such as contents, indi-
viduality and emotion. In order to detect theae elements,
speech technology has been investigated for decades. Auto-
matic Speech Recognition (ASR) transcribes speech contents.
Speaker Recognition (SR) recognizes who spoke given speech
waveforms. Speech Emotion Recognition (SER) detects emo-
tion information such as anger, sad and happy, from speech
signals. To accomplish these techniques, several kinds of
features and models have been proposed. For example, mel-
frequency cepstral coefficients and hidden Markov models
were used for ASR. Mel-spectral features were used in SR and
SER, while machine learning methods such as support vector
machine were adopted. Nowadays it is common to employ
deep-learning models for the classification and recognition
tasks. Deep learning is also utilized to extract more effective
features for each purpose.

One of the state-of-the-art deep-learning techniques, Self-
Supervised Learning (SSL), has attracted attentions of speech-
processing researchers. SSL builds a model on a task, utilizing
unlabelled data efficiently. Recent advances in SSL have
shown great potential in capturing the diverse attributes from
speech [1]. Among such the works, we focus on Hidden Unit
BERT (HuBERT) [2]. HuBERT converts speech signals into
time-series vectors as useful embeddings. HuBERT embed-
dings are information-rich, encapsulating phonetic, speaker,
and prosodic features, making it a powerful tool for speech

processing applications. HuBERT is often employed in many
applications for example ASR or SER, however, it is not guar-
anteed that HuBERT embeddings are designated to have only
the information on the target task; sometimes the embeddings
encapsulate various attributes together. Therefore, extracting
only task-specified features such as speaker identity, emotional,
and contextual information is still challenging.

To address this issue, we propose a novel approach TRI-
DENT. Our model is designed to calculate three kinds of
embeddings, each exclusively having speaker-, emotion-, and
context-related information. We thus expect that we can ob-
tain better representations and results in ASR, SR and SER
respectively, by disentangling HuBERT outputs. In addition,
the model has an ability to reconstruct the original HuBERT
embeddings after once separating the features, so that we can
improve the clarity and consistency of the extracted features
much more. We consider that this approach not only enhances
speech understanding but also has the potential to significantly
improve applications in personalized speech synthesis, emotion
recognition, and context-aware systems. In this paper, we
introduce our TRIDENT model, and demonstrate its ability
to disentangle and re-synthesize speech embeddings. Finally,
we highlight its potential contributions to the field of speech
processing.

The rest of this paper is organized as follows: Section II
briefly introduces related works to our work. The methodology
appears in Section III. To evaluate our scheme, experiments
were conducted and details are described in Section IV. Finally
Section V concludes this paper.

II. RELATED WORK

A. HuBERT: Self-Supervised Speech Representation Learning
by Masked Prediction of Hidden Units [2]

Hidden Unit BERT (HuBERT) is a self-supervised learning
framework designed to capture diverse speech representations
by learning hidden units from unlabeled speech data. HuBERT
can learn from unlabeled audio data, which means that a large
amount of raw audio data can be used effectively. Therefore,
the model expected to understand fundamental structures and
patterns of speech, making it applicable to various audio
processing tasks. HuBERT clusters audio data to generate



Fig. 1. Our model overview: The proposed method involves extracting embeddings using HuBERT, followed by three encoders: speaker encoder, emotion
encoder, and context encoder. Each encoder is connected to classification and suppression models. These models help refine the embeddings by focusing only
on the target task and suppressing irrelevant ones. The refined embeddings are then reconstructed by a decoder.

hidden units and sets up a task to predict these units, capturing
the temporal features of speech data. Based on BERT, one
of the transformer models, HuBERT utilizes bidirectional
contextual information to deepen the understanding of audio
data, resulting in high performance in many tasks e.g. speech
recognition and generation.

B. Non-Parallel Sequence-to-Sequence Voice Conversion with
Disentangled Linguistic and Speaker Representations [3]

Non-parallel sequence-to-sequence (seq2seq) voice conver-
sion aims to transform the voice of one speaker into another
one without requiring parallel training data. This approach
involves disentangling linguistic content from speaker char-
acteristics to achieve high-quality voice conversion. The pro-
posed model consists of a text encoder, a recognition encoder,
a speaker encoder, and a seq2seq decoder. The recognition
encoder aligns acoustic features with phonetic sequences to
produce linguistic representations of audio signals, while the
speaker encoder generates embeddings that capture speaker-
specific information. These components are integrated by the
seq2seq decoder to reconstruct the acoustic features. Our
method is inspired by this model structure.

III. METHOD

This section presents our proposed method: how to ex-
tract embeddings from raw speech waveforms leveraging the
HuBERT model, how to obtain representations from three
different encoders for speaker, emotion and context recognition
tasks, and how to incorporate the vectors to reconstruct the
original embeddings. Our proposed method, as illustrated in
Fig.1, involves two main stages: feature-specific encoding

using dedicated encoders, and embedding reconstruction using
a decoder.

A. Feature Encoders

Initially, embeddings are extracted from the raw speech
waveform using the HuBERT model. Let us denote the embed-
dings by OH(t), where t is a time index. In this paper, the pre-
trained HuBERT model is expected. The HuBERT embeddings
are then given to three independent encoders to obtain speaker,
emotion, and context embeddings, described below.

1) Speaker Encoder: The speaker encoder ES is designed
to extract a feature vector OS related to speaker identity:

OS = ES

(
OH(t)

)
(1)

The encoder is composed as follows: a self-attention layer,
two fully connected layers, a Global Average Pooling (GAP)
layer, and finally another fully connected layer. Note that the
representation OS is obtained for one speech sequence.

Training Objective: To allow the encoded representations
to have speaker information exclusively, an SR (identification)
classifier CS is used for model training. In addition, because
the encoder is expected to exclude the emotion information, an
SER suppression model CS−E is also utilized; the suppression
model is trained so that predicted results should be based
on uniform distributions of which number corresponds to the
number of emotions. This makes the speaker embeddings
useless for SER. Consequently, we design a loss function of
the speaker encoder according to the above discussion, defined
as:

LSpeaker = LS + λ · LS−E (2)



where LS is a cross-entropy loss for speaker identification,
LS−E is a cross-entropy loss for emotion suppression, and λ
is a weighting factor.

2) Emotion Encoder: The emotion encoder EE captures
the emotional state of the speech. Its structure is the same as
the speaker encoder. Similar to the former encoder, the emotion
encoder also outputs a vector OE as follows:

OE = EE

(
OH(t)

)
(3)

Training Objective: The basic idea of training loss func-
tion is also the same as the speaker encoder as:

LEmotion = LE + λ · LE−S (4)

where LE is a cross-entropy loss for emotion classification,
LE−S is a cross-entropy loss for speaker suppression CE−S ,
and λ is a weighting factor.

3) Context Encoder: The context encoder ET extracts
contextual information from the given speech. The encoder
is composed of a self-attention layer, followed by two fully
connected layers. The representation OE(t) is obtained as:

OT (t) = ET

(
OH(t)

)
(5)

In this case, the vectors are generated frame by frame.
Training Objective: An ASR model CT is adopted to

observe a loss function LT . We also leverage a speaker
suppression classifier CT−S and an emotion suppression clas-
sifier CT−E to minimize irrelevant information. The training
objective for the context encoder is then defined as:

LText = LT + λ (LT−S + LT−E) (6)

where LT is a CTC loss with text labels, LT−S is a cross-
entropy loss for speaker suppression, and LT−E is a cross-
entropy loss for emotion suppression, and λ is a scaling factor.

B. Reconstruction Decoder
All the extracted features, which are speaker, emotion, and

context embeddings OS , OE and context OT (t) respectively,
are combined and fed into a reconstruction decoder DR. The
decoder reconstructs the original HuBERT embeddings as:

ÔH(t) = DR

(
OS ,OE ,OT (t)

)
(7)

The purpose of this process is to preserve the integrity of
the original speech attributes, while enhancing task-specific
features. The simple reconstruction loss based on the mean
squared error LReconst is chosen for training.

C. Training Strategy
The training strategy consists of two phases in each iter-

ation. These two phases are learning opposing each other to
effectively extract only the desired features.

Phase 1: In the first phase, the encoders (ES , EE , and
ET ), decoder (DR) and feature-based classifiers (CS , CE and
CT ) are trained together, while the suppression classifiers are
frozen. The total loss used in this phase includes all the loss
values that we have already explained as:

L = LSpeaker + LEmotion + LText + LReconst (8)

Phase 2: In the second phase, only the suppression classi-
fiers (CS−E , CE−S , CT−S and CT−E) are trained to minimize
the influence of non-target features, for example, speaker
information in emotion features. This means that these models
play an adversarial role. This adversarial training helps the
encoders to learn more task-specific features by forcing the
suppression classifiers to identify unwanted modalities.

IV. EXPERIMENT

A. Experimental Conditions

The primary objective of this experiment is to evaluate the
performance of the proposed TRIDENT model and disentan-
gled speaker, emotion, and context embeddings from HuBERT
representations. The goals include assessing the accuracy of
the learned embeddings and verifying the effectiveness of the
reconstructed embeddings. Our hypothesis is that the TRI-
DENT model can effectively separate these attributes, resulting
in improved performance in Automatic Speaker Verification
(ASV), SER, and ASR tasks.

The model training utilized two datasets. First, the Lib-
riSpeech train-clean-360 dataset [4], which was a subset of
the LibriSpeech dataset, consisting of 360 hours of ”clean”
English speech, was used to provide a robust training base.
Note that, since LibriSpeech is a dataset with no emotion
labels assigned, we froze the emotion encoder when training
models with LibriSpeech. Second, the RAVDESS (Ryerson
Audio-Visual Database of Emotional Speech and Song) dataset
[5] was employed to enable the model to learn emotional
expressions. To further enhance the training data, we randomly
added noise to the speech data using the MUSAN dataset [6]
for data augmentation, ensuring diverse and comprehensive
training inputs.

The model in the upstream interface of S3PRL [7], [8]
was used as the pre-trained HuBERT model. The model was
trained using LibriSpeech-960 and the model structure follows
the HuBERT base model. The output from the final output
layer is used as the HuBERT embedding. Regarding the hyper-
parameter, λ was set to 0.5.

B. Automatic Speaker Verification

ASV was carried out to evaluate the performance of speaker
embeddings. ASV tries to verify the identity according to their
voices. In this experiment, the VoxCeleb1 [9] dataset was used
for testing, which contains over 100,000 utterances from 1,251
celebrities, extracted from videos uploaded to YouTube. The
dataset is widely used for speaker verification tasks because
of its diversity and real-world conditions.

In our evaluation, speaker embeddings were obtained and
compared using the cosine similarity of speaker embeddings
from pairs of audio samples. The Equal Error Rate (EER) was
calculated to measure the accuracy of these comparisons. A
HuBERT model from S3PRL, used as the base model, was
compared by learning speaker classification and extracting
embeddings with the same data as the proposed model. As
a comparison of the accuracy of the reconstructed structure,



the accuracy of the model excluding the reconstruction loss of
the proposed method was also verified.

The results are summarized in Table I. The EER of our
proposed TRIDENT model was 19.7%, slightly higher than the
EER of 20.5% for the S3PRL HuBERT used as the base model
and 20.1% for the model excluding reconstruction errors.

TABLE I
ASV PERFORMANCE COMPARISON

Model EER(%)
HuBERT in S3PRL (Baseline) 20.5

Ours (Proposed) 19.7
Ours (w/o reconstruction) 20.1

C. Speech Emotion Recognition

SER was performed to evaluate the performance of emo-
tion embeddings. In this experiment, the CREMA-D (Crowd-
sourced Emotional Multimodal Actors Dataset) [10] was used,
which contains 7,442 original clips from 91 actors. In these
clips, actors between the ages of 20 and 74, representing a
variety of races and ethnicities, express six different emotions:
anger, disgust, fear, happy, neutral, and sad. Each sentence
is presented with four different emotion levels: low, medium,
high, and unspecified.

In our evaluation, emotion embeddings were obtained and
used to train the emotion classifier. Weighted Average Recall
(WAR) was a metric commonly used in SER tasks to evaluate
the performance. Unlike the accuracy, which can be biased
towards the majority class in imbalanced datasets, WAR calcu-
lates the average recall (sensitivity) across all classes, weighted
by the class distribution. It is defined as the sum of the recall
values for each class, weighted by the number of instances in
each class, providing an evaluation metric that accounts for
class imbalance. It takes values between 0 and 1, with higher
values indicating more accurate performance.

The results are summarized in Table II. The WAR of our
proposed TRIDENT model was 57.0%, which was lower than
the WAR of 69.6% for the base model S3PRL HuBERT.
The WAR of 59.7% was obtained in the model excluding
reconstruction errors.

TABLE II
SER PERFORMANCE COMPARISON

Model WAR(%)
HuBERT in S3PRL (Baseline) 69.6

Ours (Proposed) 57.0
Ours (w/o reconstruction) 59.7

D. Automatic Speech Recognition

Automatic Speech Recognition (ASR) was used to evaluate
the performance of context representations in the TRIDENT
model. In this experiment, the LibriSpeech datasets were cho-
sen: the LibriSpeech-train-clean-100 subset for training, and
the LibriSpeech-test-clean subset for testing. The LibriSpeech
corpus is a collection of approximately 1,000 hours of 16kHz

read English speech derived from audiobooks, prepared by
Vassil Panayotov with the assistance of Daniel Povey.

In the evaluation, the Word Error Rate (WER) was cal-
culated to measure the accuracy of speech recognition. The
proposed TRIDENT model was compared to the baseline
S3PRL HuBERT model minus reconstruction errors.

The results are summarized in Table III. Our proposed
TRIDENT model achieved a WER of 8.61%, exceeding the
WER of 11.47% for HuBERT in the baseline S3PRL. Re-
garding the reconstruction errors. the proposed model with the
error slightly outperformed the WER of the model excluding
reconstruction errors.

TABLE III
ASR PERFORMANCE COMPARISON

Model WER (%)
HuBERT in S3PRL (Baseline) 11.47

Ours (Proposed) 8.61
Ours (w/o reconstruction) 8.93

E. Discussion

It is found that significant improvements were observed in
ASV and ASR tasks, indicating that the TRIDENT model is
particularly adept at separating and utilizing speaker-specific
and contextual information. In the SER task, our proposed
scheme achieved roughly 60% WAR; since the SER task is still
a challenging task, the performance seems to be acceptable.
In addition, the experimental results also suggest that the
reconstructed structure helps to improve the consistency and
accuracy of each embedding.

On the other hand, our method could not achieve the perfor-
mance of the baseline model. It might be due to distortions in
the RAVDESS dataset for model training and the CREMA-D
dataset. We believe such the performance degradation some-
times occurs when using several emotion datasets for training,
due to inconsistency of emotion labels or unbalanced data as
a whole. To confirm the above discussion, visualization of the
data which are not used for training in the RAVDESS dataset is
conducted. Fig 2 shows the UMAP-based visualization results.
The figure shows that the emotions in the RAVDESS dataset
are appropriately separated in general.

Fig. 2. Visualization of emotional embeddings in the RAVDESS dataset.



According to the results, we re-trained the whole model
using the CREMA-D dataset when performing SER. The
results tell us that the WAR drastically increased to 73.1%.
This significant improvement indicates the mismatch between
two datasets.

To verify whether each representation was appropriately
separated, we conducted supplemental experiments; we eval-
uated the accuracy of speaker and emotion embedding on
another task, respectively. As a result, the WAR using speaker
embedding was 48.8%. Regarding ASV, in this case we used
classification accuracy: 77.9% for speaker embeddings, and
59.4% for emtion embeddings. It turned out that there was a
significant decrease in accuracy if task and embedding were
different. This indicates that our TRIDENT model can compute
embeddings exclusively for each task, even if not perfectly.

Finally, we would like to address the reconstruction. The
reconstruction accuracy during testing achieved the MSE of
0.0068. This indicates that speaker-, emotion-, and contextual
embeddings can still have significant information to regenerate
corresponding HuBERT representations. We then carried out
additional experiment. Assuming that a speaker vector is
replaced into another one’s, we checked the difference between
the reconstructed vector and the true vector in the same
emotion and context; The results were not good unfortunately,
suggesting that our embeddings still need to be improved.

V. CONCLUSION

This paper presents our new model TRIDENT, which is
designed to disentangle and re-synthesize speaker, emotion,
and context information obtained from HuBERT embeddings.
Experimental results demonstrated that TRIDENT improved
performance in automatic speaker verification and automatic
speech recognition tasks, and achieved acceptable results in
emotion recognition. The reconstruction accuracy and classi-
fication performance in the tasks without the reconstruction
function indicate the effectiveness and enhancement.

Our future works will focus on optimizing the model archi-
tecture and training procedures, as well as exploring different
speech representations. The ability of TRIDENT to refine and
separate speech attributes will offer promising directions for
advancements in speech processing applications.
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