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Abstract
Since its introduction, SpecAugment has become a default aug-
mentation technique in many End-to-End Automatic Speech
Recognition systems. It is computationaly efficient and pro-
vides significant performance boost without increasing training
time due to its online nature. Time-masking and Frequency-
masking, the operations that contribute the most to the perfor-
mance gain in SpecAugment, replace the time-stamp and cer-
tain frequency bands with either 0 or mean value of the input
features. In this paper, we propose a framework called Gen-
eralized SpecAugment (Gen-SA), where masked values can be
replaced with any valid magnitude value. In our implementa-
tion of the Gen-SA, we replace the time and frequency mask
values in the input Mel-Spectrum with scaled Mel-Spectrum of
a white noise signal. Gen-SA has similar computational com-
plexity as the SpecAugment while providing significant gain in
robustness and uses just one additional signal for augmentation.
Experiments on Librispeech, Aurora-4 and TED-LIUM datasets
show that Gen-SA consistently outperforms baseline SpecAug-
ment with similar parameters, provides better cross-dataset per-
formance and improves robustness against the additive noise.
Index Terms:

1. Introduction
Data augmentation has been one of the key contributors in im-
proving robustness of Automatic Speech Recognition (ASR)
systems and making them more robust to various degradation
conditions. As ASR models become large with more layers and
more number of parameters, they tend to overfit even with large
amount of training data. Data augmentation helps in diversify-
ing the effective training data by applying perturbations to train-
ing utterances. Many data augmentation techniques have been
proposed and studied for ASR task. We survey some of these
techniques here.

One of the earliest data augmentation techniques in ASR
was introduced in [1] that applies Vocal Tract Length Perturba-
tions on training utterances. Speed Perturbation was used in [2]
and has become an integral part of modern ASR systems. Syn-
thesized noisy speech was used in [3–5] by adding noise signals
to training utterances to improve noise robustness of ASR sys-
tem. Similarly, [2, 6] uses room impulse responses to simulate
conditions suitable for far-field and reverberant ASR. TTS sys-
tem are used to synthetically generate speech from text in [7, 8]
to train the ASR system. All these techniques are offline tech-
niques in the sense that some processing is applied on the au-
dio signals/features and the processed audio signals/features are
stored for training. These techniques are resource and time con-
suming. This renders them difficult to use in large-scale tasks
or in resource constrained environments.

To overcome the limitations of the above approaches, many
online augmentation approaches have been proposed where

augmentation is applied on-the-fly on training samples. Fea-
ture dropout was used in [9] and examined extensively in [10]
in the context of Multi-stream ASR system training. [11, 12]
presents an approach where channels in CNNs are systemati-
cally dropped while training. SpecAugment proposed in [13]
has become an effective augmentation technique that provides
significant performance improvement in End-to-End ASR sys-
tems. SpecAugment consists of Time-warping, Time-Masking
and Frequency-Masking operations. It is an attractive augmen-
tation technique due to its simplicity, low computational com-
plexity, online nature and the performance improvement it pro-
vides. The extension of SpecAugment on large-scale dataset
[14] shows that SpecAugment scales well with large datasets. It
has also been applied in hybrid ASR systems, e.g., in BLSTM
hybrid HMM-based ASR in [4, 15, 16], and also in frame-level
hybrid ASR in [17] with significant success.

In SpecAugment, the most contributing factors are the
Time-Masking and the Frequency-Masking operations applied
on the input Mel-spectrum. The masks are selected based
on a random process as per decided policy and masked val-
ues are replaced with either 0 or mean value of the Mel-
spectrum. Recently, SpecSwap [18] was proposed, where Time
and Frequency values are randomly swapped in the input Mel-
spectrum. Here, mask values are swapped with different por-
tion of the input spectrum for both Time and Frequency values.
The performance of SpecSwap was comparable to, though not
better than SpecAugment on medium scale dataset. However,
SpecSwap demonstrates that the mask values in Mel-spectrum
can be replaced by values other than 0 or mean value.

In this paper, we propose Generalized SpecAugment where
Time and Frequency mask values can be replaced by any real
values. In practice, the mask values can be replaced with
Mel-spectrum of any signal. The signal can be a noise sig-
nal, speech of another speaker, different utterance of the same
speaker, different part of the same speaker, etc. Hence, Gener-
alized SpecAugment may require additional signal(s) for aug-
mentation. Such formulation makes Generalized SpecAugment
a framework using which augmentation policies like SpecAug-
ment and SpecSwap can be obtained as a special case. This
paper implements a form of Generalized SpecAugment where
we use white noise signal to mask certain portions of the input
Mel-spectrum. We replace the masked portion of Mel-spectrum
with scaled Mel-spectrum channels of a white noise signal. This
makes the augmentation implementation simpler and only one
additional signal is required for augmentation. By scaling the
channels of white noise Mel-spectrum, more variability can
be introduced in augmented Mel-spectrum with computational
complexity comparable to SpecAugment. We show that this
realization of Generalized SpecAugment results in better per-
formance gain than SpecAugment using Librispeech, Aurora-4
and TED-LIUM datasets. Our experiments also show that the
proposed approach is more robust against additive noise com-



pared to SpecAugment and it performs better on cross dataset
evaluations.

2. Generalized SpecAugment
A SpecAugment policy includes composition of three aug-
mentation operations: Time-Warping, Time-Masking, and Fre-
quency masking. We focus on Time-Masking and Frequency-
Masking for our formulation. These operations can be summa-
rized as follows:

• Time-Masking involves masking t consecutive time
stamps [t0, t0 + t}. Here, t is chosen from a uniform
distribution [0, T ] and T is Time-masking parameter. t0
is chosen from [0, τ − t], where τ is the length of the
signal.

• Frequency-Masking involves masking f consecutive fre-
quency channels [f0, f0 + f}. Here, f is chosen from a
uniform distribution [0, F ] and F is Frequency-Masking
parameter. f0 is chosen from [0,M − f}, where M is
the number of Mel channels.

Both these operations can be applied multiple times on
Mel-spectrum based on augmentation policy. The number
of Time and Frequency masks is controlled using parameter
n mask. For both Time-Masking and Frequency-Masking,
the masked portion is replaced by either 0 or mean value of
the Mel-spectrum. Hence, the Mel-spectrum of a signal x
(MFBEx(t, f)) after SpecAugment masking operations can
be written as follows.

MFBEx(t0 : t0 + t, f) = mean(MFBEx),

MFBEx(t, f0 : f0 + f) = mean(MFBEx).

In practice, when the log-Mel-spectrum features are nor-
malized the mean value becomes zero. It makes SpecAugment
computationally inexpensive, easier to implement, and it does
not require any additional signals. The mask values can be
applied online while training and for each training epoch, the
network will be presented with different versions of one input
Mel-spectrum. This property makes SpecAugment very attrac-
tive to use, given the advantage of computational complexity
and performance improvement.

However, in principal, the masked portions can be replaces
with any valid values. Mathematically, valid values for mask
can be any real number. For practical purposes the mask value
can be chosen as Mel-spectrum of any signal that shares similar
properties of speech signal, such as sampling rate, bit rate etc.
With this modification, we come up with Generalized SpecAug-
ment as follows:

MFBEx(t0 : t0 + t, f) = MFBEy(t0 : t0 + t, f),

MFBEx(t, f0 : f0 + f) = MFBEy(t, f0 : f0 + f),

where MFBEy(t, f) is the Mel-spectrum of an exter-
nal signal y(t) that is used to replace the masked values.
MFBEy(t, f) can be Mel-spectrum of any signal including,
but not limited to, noise signal, speech of a different speaker,
different utterance of the same speaker, etc. By this modifica-
tion, SpecAugment now requires additional signals for mask-
ing. At training time, MFBEy(t, f) can be selected for each
example or each batch from a pre-loaded set of signals in an
online manner. This increases the computational complexity

slightly. However, choosing mask values other than 0 or mean
values provides more variations of a training example while
training the network. With MFBEy(t, f) = 0, we obtain the
original SpecAugment formulation.

In this work, we select y(t) as a white noise signal. We
scale the Mel-spectrum of white noise signal MFBEwn(t, f)
by multiplying values of each Mel channel with a value in 0−1.
This scaling makes certain Mel channels have different weights
randomly for each sample as follows:

MFBEx(t0 : t0 + t, f) = MFBEwn(t0 : t0 + t, f) ∗ S,
MFBEx(t, f0 : f0 + f) = MFBEwn(t, f0 : f0 + f) ∗ S,

where S1×M ∈ [0, 1] and ∗ denotes element-wise multiplica-
tion of S with each frame of MFBEwn.

Figure 1 shows the comparison of SpecAugment and Gen-
eralized SpecAugment with scaled white noise Mel-spectrum.
As it can be observed, the Generalized SpecAugment approach
provides more variations in input Mel-spectrum. The scaling of
white noise Mel-spectrum channels ensures that for each iter-
ation, different time stamps and frequency stamps are masked
with different values. Moreover, by using white noise for aug-
mentation, Mel-spectrum of only one additional signal is re-
quired, that can be pre-loaded for computation. This makes
the computational complexity of the proposed method similar
to SpecAugment. Generalized SpecAugment has all the desir-
able properties of SpecAugment such as ease of implementa-
tion, online nature, and low computational complexity.

Using Generalized SpecAugment in training of an Acous-
tic Model (AM) can provide better generalization for unseen
test utterances. SpecAugment forces AM to underfit the train-
ing examples by introducing degradation to the input features.
Generalized SpecAugment increases the degradation amount by
many-fold due to its large span of values. Moreover, using white
noise signal can provide some level of noise robustness as well.
Here, masking the values is identical to adding band-limited
white noise as done in [5] with −∞ dB Signal-to-Noise Ra-
tio (SNR) in masked portion and ∞ dB SNR elsewhere. We
study generalization as well as noise robustness of General-
ized SpecAugment with scaled white noise features in following
Section.

3. Experiments
3.1. Dataset and ASR system

We perform all experiments on Librispeech [19] dataset using
ESPNet [20] toolkit to develop ASR systems. We use Lib-
rispeech 960h train set to train Transformer Acoustic Models
(AM) in ESPNet using single NVidia RTX 2080 Ti GPU. The
AM is trained using ESPNet Librispeech recipe with following
modifications to use single GPU:

• Transformer AM [21,22] with 12 encoder and 6 decoder
layers is used. 4 attention heads are used in each layer
with 256 attention dimension.

• The model is trained using 80 dimensional Mel-
filterbank energies and pitch features extracted using
Kaldi [23]. Output of the network is 5000 sub-word units
extracted using Sentencepiece [24] library. We do not
use 3-way speed perturbation, but we expect that using
speed perturbation will further improve performance of
the system.
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Figure 1: (a) Mel-spectrum of an utterance, Mel-Spectrum after
applying (b) SpecAugment, and (c) Generalized SpecAugment
with scaled white noise.

• We use default configuration parameters in ESPNet
transformer model 1 available with librispeech recipe and
modify it for single GPU. We increase batch size to 64,
and set accum-grad to 2. transformer-lr was set to 5.0
and we train the network for 70 epochs. All other train-
ing parameters were kept as per default values.

• We use pre-trained sub-word token-based large LSTM
Language Model (LM) available from ESPNet model
repository 2.

• Decoding is done using beam size 10, ctc-weight is set
to 0.4, and lm-weight is set to 0.6.

• For Gen-SA, we take a white noise signal and compute
Mel-filterbank energies and pitch in the same way as
train utterances. We then normalize the features using
CMVN stats computed from the training data. We mod-
ify the SA implementation in ESPNet by pre-loading the
features of white noise signal and replace masked values
with scaled white-noise features.

• Augmentation parameters are as follows for both SA and
Gen-SA:

– Time warping: max time warp=5

– Frequency masking: F=30, n mask=2

– Time masking: T=40, n mask=2

The model was tested on librispeech dev (dev-clean, dev-
other) and test (test-clean, test-other) sets. To demonstrate the
robustness of our approach we test the models on corrupted ver-
sions of librispeech dev and test sets. We add babble noise
with 15, 10, and 5dB SNR using kaldi and test the performance
of various augmentation techniques. Moreover, we train AM

1espnet/egs/librispeech/asr1/conf/tuning/train pytorch transformer.yaml
2LSTM LM for Librispeech

on Aurora-4 dataset [25] to further analyze the noise robust-
ness. For Aurora-4 dataset, we use pre-trained 65,000 vocabu-
lary word LM with available with ESPNet for WSJ task 3. We
also perform cross-dataset evaluation on TED-LIUM [26] dev
and test set using AM trained on Librispeech. We report CER
and WER for various experiments.

3.2. Results

3.2.1. Baseline results

Figure 2: Validation accuracy on Librispeech dev sets from
epoch 10-70 for SA and Gen-SA.

Table 1 shows the baseline results in terms of CER and
WER with various augmentation strategies. It can be observed
from Table 1 that incorporating SA in training pipeline signifi-
cantly improves performance of ASR system over not using any
augmentation. Gen-SA improves over SA across all test-sets,
with the most improvement seen in the dev-other (0.4% abso-
lute) set. This shows that replacing mask values with scaled
white noise filterbank values improves the ASR performance
over replacing mask values with 0. Figure 2 shows the valida-
tion accuracy for SA and Gen-SA starting from epoch 10 to 70.
It can be observed that Gen-SA provides better validation accu-
racy as training progresses and indicates that Gen-SA provides
better generalization in performance.

We perform ablation study as per [13], where we remove
one component at a time from augmentation pipeline to observe
contribution of each operation. Results of the ablation study are
tabulated in Table 2. As observed in [13], we find that for SA
and Gen-SA both, Frequency masking contributes the most in
performance improvement. In the case of Gen-SA, the contri-
bution of frequency masking was found to be even more signif-
icant than SA. Removing Time masking had little impact on the
overall performance of both SA and Gen-SA.

3.2.2. Cross-dataset performance

To observe the generalization capabilities of the augmentation
techniques, we test the performance of ASR systems trained
on Librispeech dataset on other out-of-domain dataset, namely,
TED-LIUM. We use dev and test set of TED-LIUM for cross-
dataset evaluation. We perform decoding using trained model
and same decoding parameters without any LM. Table 3 shows

3WSJ LM for Aurora-4 task

https://github.com/espnet/espnet/blob/master/egs/librispeech/asr1/conf/tuning/train_pytorch_transformer.yaml
https://drive.google.com/open?id=1BtQvAnsFvVi-dp_qsaFP7n4A_5cwnlR6
https://drive.google.com/open?id=1zIK6vE_0Yfn9ezcLwNPk1cCXhrrw9Oje


Table 1: Baseline results with various augmentation techniques.

Aug. dev-clean dev-other test-clean test-other
CER WER CER WER CER WER CER WER

no-SA 4.1 3.1 10.9 8.6 4.3 3.5 10.8 8.6
SA 4 2.9 9.5 7.1 4.2 3.2 9.4 7.4
Gen-SA 3.9 2.8 9.1 6.8 4.2 3.2 9.3 7.3

Table 2: Results of ablation study for SpecAugment and Gener-
alized SpecAugment

dev-clean dev-other test-clean test-other
SA
- Time masking 3.1 7.6 3.4 7.5
- Freq. masking 3 7.8 3.2 7.8
Gen-SA
- Time masking 3.3 7.5 3.4 7.5
- Freq. masking 3.1 8.1 3.4 8.1

Table 3: Cross-dataset results for various augmentation tech-
niques. The AM is trained on Librispeech train set and perfor-
mance is evaluated on TED-LIUM dev and test set in terms of
CER and WER without any LM.

tedlium-dev tedlium-test
CER WER CER WER

No-SA 21 19.4 19.8 18.9
SA 20 18.3 18.7 17.4
Gen-SA 19.5 17.9 18.3 17

the results of this cross-dataset evaluation. It can be observed
that SA greatly improves cross-dataset performance over no
augmentation. This suggests that SA has good generalization
capabilities in terms of cross-dataset performance. Gen-SA im-
proves over SA significantly, showing superior generalization
capabilities compared to SA. This observation suggests that the
choice of masking value in SA not only improves same dataset
performance, but also improves cross-dataset performance and
provides better generalization in ASR system.

3.2.3. Robustness to noise

We now evaluate noise robustness of various augmentation
techniques. Both SA and Gen-SA introduces corruptions in
training MFBEs by masking certain portion. Equivalently,
masking can be represented as adding noise with −∞ SNR in
the masked portion, since no signal magnitude is present in the
masked portion. Such corruption may introduce noise robust-
ness in the trained model. Table 4 shows the results on lib-
rispeech dev and test set corrupted with babble noise with var-
ious SNRs. As hypothesized, SA indeed introduces significant
noise robustness in the trained model over no augmentation. In
this case also, Gen-SA provides the best performance over both
the models. The difference in performance of SA and Gen-SA
increased with the increased amount of noise in test utterances.
Table 5 shows results on Aurora-4 dataset. Gen-SA provides
significant performance improvement over SA on Aurora-4 as
well. Especially, on test set B (additive noise) and D (channel

Table 4: Results of various augmentation techniques for noisy
test set. Babble noise was added with 15, 10, and 5dB SNRs in
Librispeech test-clean and test-other utterances to create noisy
test set.

clean 15 dB 10 dB 5 dB

No-SA test-clean 3.5 5.8 14.1 40.4
test-other 8.6 18.1 34.8 66.2

SA test-clean 3.2 4.6 8.8 26.9
test-other 7.4 12.7 24 51.8

Gen-SA test-clean 3.2 4.4 7.9 23.2
test-other 7.3 11.8 21.2 46.2

Table 5: Results of various augmentation techniques on Auroa-
4 multicondition dataset.

A B C D Average
no-SA 9.5 16.6 15.6 29.3 21.5
SA 4.7 7.5 6.2 15 10.4
Gen-SA 4.7 7.1 6.1 14.7 10.1

degradation + additive noise) the performance difference is ob-
servably large. This further bolsters the superior generalization
capability of the proposed approach for noisy conditions.

4. Conclusions and Future Work
We propose a generalized version of SpecAugment (SA) where
Time and Frequency mask values can be any value, not just 0
or mean of the features. For practical purposes the mask values
can be replaced with features of any other signal. In this paper,
we present one realization of Generalized SpecAugment (Gen-
SA), where we replace the masked region with scaled features
values of white noise signal. The results of our experiments
show that Gen-SA performs better on Librispeech dev and test
datasets compared to SA for similar augmentation parameters.
Moreover, results on noisy version of Librispeech dev and test
set, and results on AURORA-4 and TED-LIUM dataset suggest
that Gen-SA provides better noise robustness and cross-dataset
performance compared to SA. This performance improvement
requires only one external signal and it has similar computa-
tional complexity as SA. We show that replacing mask values
in SA with values other than 0 or mean value can provide signif-
icant performance boost and robustness to the acoustic model.
In future, we plan to use other signals, such as speech of differ-
ent speaker, more noise signals, music signals, etc. to replace
mask values and analyze the robustness of the ASR system to
other perturbations and degradation conditions.
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