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Abstract—This paper discusses the attack feasibility of Remote
Adversarial Patch (RAP) targeting face detectors. RAP targeting
face detectors has the following difficulties compared to RAP
targeting general object detectors. (1) Objects of various scales are
targets for detection, and especially for small faces, the amount
of convolution of features to be used as the basis for detection is
small, and the range of influence on the inference results is highly
restricted. (2) Also, since this is a two-class classification problem,
the feature gaps between classes are large, making it difficult to
attack the inference results by guiding them to another class. In
this paper, we propose a new patch placement method and loss
function for each problem. The patches targeting the proposed
face detector showed superior detection obstruct effects compared
to the patches targeting the general object detector.

I. INTRODUCTION

Deep neural network (DNN) models are susceptible to
malicious manipulation of input data. Previous researches
have employed a variety of approaches, including the use of
specially designed spectacles that obscure key feature points of
an object by reflecting light [1], as well as the development of
sophisticated Adversarial Examples (AE) that subtly alter pixel
values to cause the model to misclassify inputs intentionally.
The threat of DNN attacks has emerged as a significant
concern in light of the increasing incorporation of DNN-based
models in a multitude of systems. Additionally, researches
have explored the Remote Adversarial Patch (RAP), an attack
that does not depend on the specific object being targeted.
Unlike methods that directly alter features, RAP can remotely
influence the model’s output.

RAP was defined by Mirsky et al[2]. They identified two key
characterisitics in their definition of RAP. One characteristic is
the semantic alteration of model inference caused by patches,
and the other is the ability of patches to be remotely attacked.
Among these characteristics, the remote attackability of RAP
is particularly significant. Remote attackability refers to the
ability of an Adversarial Patch (AP) to be exploited even when
placed at a distance from the target object. In comparison to
APs placed on the target object, RAP are more difficult to
attack since they do not directly modify the features of the
target object. For the sake of simplicity, this paper defines
RAP solely based on the characteristic of remote attackability.

This study focuses on the application of RAP to face detec-
tion. Although RAP has been extensively discussed for gen-

eral object detection (multi-class object detection)[3], [4], the
feasibility of RAP for face detection remains underexplored.
Focusing on face detection is particularly important because
obstructing it significantly enhances privacy protection. For ex-
ample, applying a RAP to images before publication or capture
could prevent unauthorized third parties from replicating the
face region.

Two key challenges in applying RAP to face detection are
as follows. (1) the scale of detectable objects is diverse. In
the field of face detection, unlike the general object detection
field, there is a requirement to detect obscure and distant
objects, such as surveillance camera images. As a result,
there is a tendency to focus on small features so that even
extremely small faces can be detected. Small features have
limited characteristics in the area around the face in the image
that are included in the convolution. Consequently, the area that
affects face detection is also small. Thus, the restrictions on
where the patches can be placed are strict and are considered
difficult to attack by RAP. (2) fewer classes to classify. Face
detection involves fewer classes compared to multi-class object
detection. In addition, because RAP operates from a distance
and does not alter the object’s intrinsic features directly.
Therefore, it is difficult to redirect a class given to a particular
object to another class with similar features, which limits the
approaches that can be taken in an attack.

To address this issue, this study proposes a novel RAP
method which involves two main processes: scaling and tiling.
The scaling process adjusts the size of patches to correspond
with different face scales during training, enhancing optimiza-
tion across varying scales. The tiling process arranges the
patches in a grid pattern, ensuring that any cropped region of
the image will contain part of a patch. This approach addresses
the issue by applying a tiling process that ensures any cropped
region contains patches to some extent, and a scaling process
that adjusts their relative size according to the scale variation
of the face.

In addition to optimizing patches using the proposed patch
applying method, we introduce a novel loss function for face
detection obfuscation, called the Borderline False Positives
Loss. Borderline False Positives Loss increases false positives
around faces and induces misjudgment of detected face coor-
dinates.



We conducted comprehensive experiments on the proposed
method using multiple datasets and various RAP methods.
Through these experiments, we demonstrated the effectiveness
of the proposed method in terms of its obstruction performance
against patch-based face detectors and its performance across
diverse scales.

The contributions of this paper are listed below.
• We proposed a novel RAP method based on patch tiling

and borderline false positive loss.
• Our comprehensive experiments showed consistent ob-

struction performance.
• Our proposed method also demonstrated consistent ob-

struction performance across datasets with varying face
scales, showing robustness to face scale variation.

II. RELATED WORK

A. Adversarial Attack

Data that exploits vulnerabilities in a Deep Neural Network
(DNN) model when attached to an image is called an Ad-
versarial Patch (AP). Although AP generation methods were
initially discussed for image classification models, Song et al.
proposed the first AP generation method for object detection
models [5]. Compared to image classification tasks, object
detection tasks detect and label multiple objects in a scene,
making it more difficult for AP to obstruct detection. APs
have also been studied for person detection tasks[6]. Person
detection is considered to be difficult to obstruct due to the
large diversity within the person class.

However, all the studies discussed so far had the limitation
that they must be located on a defined region of the detected
object.To overcome the region limitation, Liu et al. proposed
an adversarial patch, called DPatch[3], so that the effect of the
attack is independent of the location.Their method is similar
to that of Liu et al. but differs in that Liu et al. optimize the
patch so that its region of presence is the only region proposed,
whereas Lee et al. maximize the losses used by the model
during training[4].

On the other hand, Mirsky et al. proposed a patch generation
method that can apply AP to segmentation models and simul-
taneously defined RAP[2]. According to the definition given
by Mirsky et al., the methods of Lee et al. and Liu et al. do
not strictly fit the definition of RAP. However, in this paper,
we define RAP as a method that can be attacked remotely, and
therefore include these two methods as RAP.

B. Face Detection Obstruction

Obstruction of face detection has been discussed for the
purpose of preventing unauthorized face image leakage due
to unintentional capture of face images. Yamada et al. [1]
proposed a detection jamming method that does not interfere
with facial expression communication, in which facial features
are modified by glasses irradiating near-infrared signals. AE
[7] and AP [8] in face detection tasks have also been studied,
but all of these methods involve processing of the face areas
to be disturbed. Therefore, their applications are limited for

privacy protection purposes. On the other hand, the patches
generated by the proposed method do not require processing
of face regions.

III. METHOD

The proposed method consists of a patch application process
and a learning process. Each process is explained in the
sections Section III-A and Section III-B, respectively. The
overall process is shown in Fig. 1. Let I be a dataset
consisting of N images, where each image can be represented
as I = {Ii | i = 0, · · · , N − 1}. The face detector F
takes an image Ii as input and returns an inference result
di = {dik | k = 0, · · · ,M − 1}. Here, the inference result
di consists of M ≥ 0 face regions dik. Each face region dik
includes the rectangular coordinates (x, y) of the rectangle’s
center, the width and height (w, h), as well as the confidence
value p for the detection. It can be expressed as follows:

dik = (pik, xik, yik, wik, hik). (1)

In addition, the Ground Truth (GT) of the correct face detection
inference result for each image is gi.

Let P be a adversarial patch, and let (wP , hP ) be its width
and height. Using the embedding function A to embed the
patch in the image, the patched image Ii can be expressed as
follows.

Ĩi = A(Ii, P ). (2)

Furtermore, let the face detection results for Ĩi be denoted as
d̃i, with each element expressed similarly to di as follows.

d̃i = {d̃ij | j = 0, · · · ,M − 1} (3)

d̃ij = (p̃ij , x̃ij , ỹij , w̃ij , h̃ij). (4)

A. Learning Methods

1) Definition of Obstruction: For the detection d̃ij , True
Positive (TP) and False Positive (FP) are defined based on the
IoU threshold value θD, and the number of cases where the
detection of the ground truth (GT) fails is defined as False
Negative (FN), as follows.

d̃ij is TP ⇐⇒ ∃gik such that IoU(d̃ij , gik) ≥ θD (5)

d̃ij is FP ⇐⇒ ∀gik such that IoU(d̃ij , gik) < θD (6)

gik is FN ⇐⇒ ∀d̃ij such that IoU(d̃ij , gik) < θD (7)

True Negative (TN) indicates whether the system can cor-
rectly identify areas where faces do not exist. However, in this
paper, we will be focusing on the True Positive (TP), False
Positive (FP) and False Negative (FN) values related to the
face areas detected by the detector. A decrease in TP indicates
that the face detector is failing to correctly identify face areas,
while an increase in FP suggests that it is becoming more
difficult to extract the correct face areas from the detection
results. Thus, the efficiency of obstructing face detection can
be evaluated based on the decrease in TP and the increase in
FP.

2



Patch Applying Process

Face
Detector

Learning Methods

Fig. 1. Schematic diagram of the proposed patch generation method.
We propose a patch application method and its learning method to explore the feasibility of generating RAPs to attack face detectors

2) Borderline False Positive Loss: In this study, we propose
Borderline False Positive Loss to reduce True Positives (TP)
and increase False Positives (FP). This loss function increases
FPs around the boundary of the rectangle in gi by obstructing
the true face area, thereby reducing TP. Let Lbfpc denote the
Borderline False Positive Loss, Equation (8), the objective
function, Equation (9) the definition of loss function.

min
P

{Lbfp(gi, d̃i)}. (8)

Lbfpc(gi, d̃i) = −
M∑
j=0

bij ∗ log(1− p̃ij). (9)

Here, bij is shown in the formula for the borderline variable
in the Equation (10). bij is a borderline judgment variable that
is 1 when the inference result for the image with the patch
added, d̃ij , is θT > aij ≥ θF , which is the boundary between
TP and FP, and 0 otherwise.

bij =

{
0 (aij ≥ θT ) or (aij < θF )

1 θT > aij ≥ θF
. (10)

The values of θT and θF are IoU thresholds, set separately
from the threshold θD used to classify d̃ij as TP or FP. The
following inequality must hold for each threshold: θT > θD >
θF . As shown in Equation (11), aij represents the maximum
IoU value calculated between gi = {gik | k = 0, · · · ,M − 1}
and d̃ij .

aij = max
gik∈gi

IoU(gik, d̃ij). (11)

The loss function, Lbfpc, increases the confidence value
of the inference results that may be false positives based on
the borderline decision variable, bij . The boundary judgment
variable bij is a variable that classifies the inference results
to be the judgment boundaries between TP and FP based on
the maximum IoU value aij obtained between gi and d̃ij . The
loss function, Lbfpc, is designed to mislead the coordinates
of the inference results that would otherwise be true positives
into false positives by increasing the number of false positives
around the true face region using bij .

B. Patch Applying Process

The expression for the patch application process A is shown
as Equation (12), and the process of the patch application
process is shown in the figure Fig. 1 on the right.

A(Ii, gi, P ) = G(Ii,M(Ii), T (Ii, S(P, gi))). (12)

The function M takes the image Ii as an argument and converts
it into a reference image for masking only the foreground.
The function G takes as arguments three images(foreground,
mask and background) of equal height and width, and performs
foreground-background composition. The scaling function S
and the tiling function T are both functions that perform
transformations on the patches that are optimized. In applying
patches, the scaling and tiling processes play a particularly
important role.

1) Scaling: The scaling process is the S(P, gi) on the rigth
side of Fig. 1 . By making the scaling function S align the area
ratio of patches and faces, it encourages patches to be able to
obstruct faces of various scales uniformly during learning. In
the scaling process, patch P is resized to have a width of wPS

and a height of hPS . Using patch P and the corresponding
GT gi, the width wPS and height hPS of the scaled patch are
expressed by the following equations.

(wPS , hPS ) = S(P, gi)

= (round(wP ∗ s), round(hP ∗ s)). (13)

s =

√
α ∗ wik ∗ hik

hP ∗ wP
. (14)

k = argmax
k

wik ∗ hik. (15)

2) Tiling: The T (Ii, S(P, gi)) on the right side of Fig. 1 is
a tiling process. The tiling function T is a process that converts
a patch PS into a patch tile PT of the same height and width as
the image by tiling the patch PS horizontally and vertically.
Reducing the dependence of face detection on face position
by ensuring that the pixels of the patch are included when
any face in any area is extracted as a feature. Each coordinate
PT [x, y] of PT can be determined using the tiling function T
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as follows.

PT = T (I, PS). (16)
PT [x, y] = PS [x mod wPS , y mod hPS ]. (17)

The edges of the patches created by tiling will be cut off to
match the image size.

IV. EXPERIMENT

A. Experimental Setup

1) Dataset: Two datasets are utilized in the experiment:
CASIA Gait B (CGB) [9] and FaceForensics++ (FFP) [10].
CGB is designed for gait recognition and includes images cap-
tured in a controlled indoor environment. The dataset features
124 subjects, each captured from 11 different angles. FFP, on
the other hand, is a dataset for detecting DeepFake videos and
comprises 1000 videos featuring frontal faces without occlu-
sion, collected from Youtube press conference videos. In the
experiment, only frontal faces were extracted from the CGB
to match the experimental conditions with the FFP containing
frontal faces. Images without facial regions were removed from
these videos using S3FD to avoid duplication, and the training
and validation datasets of 3000 images each were extracted.
In addition, for the purpose of detection obstruction, GT is the
inference result di of the image Ii before patch application.
Therefore, in the experiment, di = gi.

2) Preprocessing: For these moving images, a mask image
and D̂i, the GT, are created in advance. In this experiment,
rembg[11] was used to create the mask image and S3FD was
used to create D̂i.

3) Learning Patch: For the various hyper-parameters, the
IoU threshold is set to 0.6, and the scaling parameter α =
5.58 and the loss function parameters θT = 0.6, θF = 0.3
are determined from empirical results. For optimization, the
Nesterov Iterative Fast Gradient Sign Method (NI-FGSM)[12]
is used in the proposed method. In addition, the methods of
DPatch[3] and Lee et al.[4] are used for comparison.

4) Evaluation Methods: The F value and the Average
Precision (AP) value are used to compare how much the
detection performance is degraded compared to the situation
without patch obstructions. The number of TPs, FPs, and GTs
are also used to compare obstruction performance. The reason
for not simply using F and AP values is that F values are
insensitive to changes in the number of TPs when the number
of FPs becomes extremely large relative to the number of
TPs, and AP values are insensitive to increases in the number
of FPs, making it difficult to correctly compare obstruction
performance.

B. Detection Obstruction Performance Evaluation

We present a comparison of the proposed RAP genera-
tion method with other methods. DPatch[3] and Lee et al.’s
method[4] are used for the comparison. The coordinates on
the image where the two patches to be compared are placed
are determined randomly, as in the case of both patches
generation.S3FD is used for face detection. The experimental

TABLE I
COMPARISON OF DETECTION OBSTRUCTION PERFORMANCE

dataset method F AP GT TP FP

CGB Dpatch 9.96e-1 1.0 3000 2977 0
Lee 1.34e-1 4.14e-2 3000 2967 38235
Proposed 5.29e-3 1.41e-3 3000 1934 726587

FFP Dpatch 9.13e-1 9.87e-1 3315 3305 617
Lee 1.96e-1 9.29e-2 3315 3287 26866
Proposed 1.71e-1 2.76e-1 3315 2870 27445

results are shown in I. Table I shows that the proposed method
has fewer TPs and more FPs than the other methods on both
datasets. Therefore, the proposed method is superior to other
methods in terms of obstruction performance.

The results of the proposed method between the two
datasets, CGB and FFP, are significantly different: for TP and
FP, not only for the proposed method, but also for the other
methods, CGB has less TP and more FP.

CGB tends to include relatively small faces because of the
need to capture the entire CGB body, while FFP tends to
include relatively large faces because it is for face processing.
In light of this, detection obstruction for small faces may be
an easier task than detection obstruction for large faces due to
the ease of CGB obstruction.

C. Positional Robustness Evaluation

When detection is obstructed for different images, the
relative positional fluctuations between the patch and the
obstructed object due to the difference in the coordinates
of the obstructed object for each image are considered to
affect the detection obstruction performance. Therefore, we
verify whether detection obstruction is robust to such position
variations by comparing its position independence with the
DPatch[3] and Lee et al.’s method[4]. The inference results for
all images in the test set with the patch applied are classified
into TP and FP based on the ground truth, and the frequency
for each upper right coordinate is tabulated and plotted as
a heat map. The two patches to be compared are fixed at
the coordinate (0, 0) to illustrate the effect of the patch on
detection. Ideally, the verification should be performed on a
dataset where the coordinates of the obstacle targets are evenly
distributed throughout the image. In reality, however, it is
difficult to prepare such a dataset. Therefore, we created a
coordinate uniform data set that met the ideal conditions in a
pseudo-way, and conducted a verification.

Coordinate Uniform Data Set In order to show that it
is possible to obstruct detection no matter where the face is
located in the image, we created a dataset in which the posi-
tions of the face regions are uniformly distributed throughout
the image, based on 10 images randomly extracted from the
CASIA Gait B test set. The coordinate uniform dataset was
created by shifting the image based on the top left coordinate
of the face region and repeating the operation from the top
left to the bottom right of the image. In this case, the width of
each movement was set to 25 pixels. The coordinate-uniform
dataset was created by inferring the face region before applying
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Fig. 2. Detection results for the coordinate uniform dataset. Top row: DPatch,
middle row: patches by Lee et al. and bottom row: patches by the proposed
method. From left to right: TP, FN, FP

the tiling adversarial background image, and then excluding
images for which there were no inference results. The total
number of images in the dataset is 24,654.

The results of the experiment are shown in Fig. 2. The two
previous studies show that both TP and FP are concentrated
around the patch’s coordinate (x, y) = (0, 0). On the other
hand, the proposed method shows a wide distribution of red
color throughout the image, although it is faint.

The experimental results provide evidence to support the
hypothesis that the placement coordinates of patches are
strongly constrained when obstructing faces of various scales,
as proposed in Section I. In the verification results, the FN and
FP of Dpatch and Lee’s patches are concentrated in the vicinity
of the coordinates where the patches are located. Therefore,
it can be inferred that the patches of Dpatch and Lee et al.
are strongly constrained in terms of the placement coordinates
of patches that can efficiently obstruct detection. In contrast,
the proposed method distributes FN and FP throughout the
image. This is a result that shows the effectiveness of the
proposed method’s tiling process, and it is a result that shows
one advantage over previous research.

D. Dataset Transferability

For the purpose of protecting privacy, it is desirable that
the generated patches can obstruct face detection in various
situations. Therefore, we will swap the data sets between
the training and validation phases, and verify whether the
obstructing performance of the patches learned with the known
data set can obstruct the unknown evaluation data set as well
as the known training data set. If it is possible to obstruct
face detection in various situations, it should be possible to
obstruct other datasets with different shooting conditions in
the same way as the training dataset. In addition, we will
consider the possibility that the transferability to unknown
datasets may differ depending on the face detection model
used during training, and we will conduct verification using

multiple models.
The patch is tested using a different dataset from the one

used for learning. We conduct experiments for each of the three
models MTCNN[13], S3FD[14], and RetinaFaceDeng2020-je
and compare them. The experimental results are shown in
TableII.

TABLE II
TABLE FOR DATASET TRANSFERABILITY

train/test
dataset model F AP GT TP FP

CGB / CGB MTCNN 1.87e-3 4.74e-4 3000 255 269967
S3FD 5.29e-3 1.41e-3 3000 1934 726587
RetinaFace 4.91e-4 1.25e-4 3000 209 847383

CGB / FFP MTCNN 7.62e-1 9.96e-1 3315 3207 1900
S3FD 9.69e-1 9.99e-1 3315 3214 107
RetinaFace 1.96e-1 8.52e-1 3315 3199 26133

FFP / FFP MTCNN 6.87e-1 9.98e-1 3315 3128 2667
S3FD 1.71e-1 2.76e-1 3315 2870 27445
RetinaFace 1.46e-1 6.93e-1 3315 3138 36418

FFP / CGB MTCNN 3.77e-1 9.26e-1 3000 816 510
S3FD 1.07e-1 9.91e-2 3000 504 5901
RetinaFace 1.93e-2 2.72e-1 3000 763 75336

The patches learned using CGB have around 3200 TPs in the
FFP verification, regardless of the model. On the other hand,
when comparing the FFP verification and CGB verification
for the patches learned using FFP, the CGB verification has
significantly fewer TP.

If we refer to the results of verifying the patches learned
using FFP with CGB, TP is less than 1000 in all models.
Therefore, we believe that patches learned using CGB do not
have transferability to FFP, but patches learned using FFP do
have a certain degree of transferability to CGB. We believe that
this difference is due to the difference in the clarity of facial
features between the two datasets. CGB contains many images
taken from a distance, so the resolution of the facial region is
low and the facial features are ambiguous. On the other hand,
FFP contains many images taken at close range, and because
of the high resolution, it contains many clear facial features.
Therefore, it is thought that patches learned with FFP were
strongly encouraged to optimize patches due to clear facial
features, and although they had low obstruction performance
against FFP, they showed higher obstruction performance
against CGB, which contains more ambiguous facial features.
We believe that these results demonstrate the effectiveness of
the proposed method for scaling. The purpose of scaling is
to discover patterns that can obstruct the detection of faces
of arbitrary scale. As a result, although the patches learned
with CGB did not show any obstructing performance in FFP,
the patches learned with FFP were able to obstruct detection
in CGB, and we believe that the results of the experiment
demonstrated results that were in line with the purpose.

V. DISCUSSION

In Section IV-B, the AP value for the FFP dataset for Lee et
al.’s method is lower than that for the proposed method. One
possible reason for this is the difference in the confidence value
distribution. The confidence value also affects the calculation
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of AP. It is possible that the method of Lee et al. has more
inference results with confidence values close to the threshold
for rejecting inference results. Therefore, it is possible that the
method of Lee et al. will show better obstruction performance
as learning progresses.

The detection obstruction performance of the proposed
method for the FFP dataset shows good results compared to
other methods, but there is the issue of reducing the number
of TP to achieve better detection obstruction. In addition,
the existing RAP used as a comparison target suggests that
it may demonstrate better obstruction performance than the
proposed method if optimization is carried out. Therefore,
it is necessary to increase the number of images used and
the number of epochs and re-verify the comparison with
the proposed method. In addition, the current approach for
increasing FP is less effective for MTCNN and may be model-
dependent.

VI. CONCLUSION

We discussed the difficulty of implementing RAP that
targets face detectors and presented the diversity of face
region scales and the small number of classification classes
as reasons for this. In contrast, this study proposed a unique
patch placement method and loss function as a solution to each
of these problems. As a result of the patch obstructions using
the proposed method, the number of TPs was lower and the
number of FPs was higher than with other methods, indicating
that it is possible to obstruct the detection of face detectors. In
addition, the patches learned on a dataset that tends to include
large faces showed a certain level of obstruction performance
on a dataset that tends to include small faces, indicating
that they can cope with the diversity of face sizes. However,
although the number of TPs for the proposed patching method
is lower than that for existing methods, it still includes many
TPs, so the method needs to be improved.
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