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Abstract—Sound field measurement helps us to understand
the sound field, which is difficult to understand only by hear-
ing. Recently, to reduce the measurement points, methods for
estimating sound fields using physics-informed neural networks
(PINNs) based on the wave equation or the Helmholtz equation
have attracted much attention. In this study, we propose the sound
field estimation method for the scattered sound field with PINNs
by introducing the boundary condition into the loss function as
additional physical laws. From the simulation experiments, the
proposed method can improve the estimation accuracies in three-
dimensional sound field with a scattering object with the acoustic
impedance.

I. INTRODUCTION

In an ordinary room, the sound propagates through reflec-
tions, diffraction, and scattering , depending on the materials
and boundary shapes of the objects such as walls and furniture.
Analyzing such a complex sound field is useful for a variety
of applications, including room acoustics design and acoustic
rendering in virtual reality.

Especially, the acoustic scattering on walls and objects
complicates the sound field and is difficult to be modeled.
In recent years, many modeling methods have been proposed
to estimate the scattered sound fields. Based on the concept
of compressive sensing [1], [2], the actual sound field can be
modeled only by a small number of microphones. In [3], a
scattered sound field from a rigid sphere is modeled using a
sparse equivalent source method [4] with a small number of
microphones. Using the superposition of point sources as a
physical model of sound propagation [5], the scattered sound
field from a rigid sphere can be estimated at lower frequencies.

On the other hands, recently, the estimation methods using
deep learning have been proposed [6], [7]. In [8], the sound
pressure level in the scattered sound field was estimated using
a convolutional neural network (CNN) from the geometry of
scattering objects. However, the typical data-driven methods
do not guarantee that the physical laws of the outputs will
hold, since the models are trained only on the dataset.

By contrast, a physics-informed neural network (PINN) has
been proposed in 2019 [9]. A notable feature of PINN is that
the output follows the laws of physics by introducing govern-
ing equations in the loss function. In acoustics, PINN has been
applied in studies to estimate the sound field [10]–[13]. In these
studies, the wave equation or Helmholtz equation is used as the
governing equation for acoustics. Furthermore, the scattered
sound field was estimated around a rigid sphere by using
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Fig. 1. Concept of estimation for scattered sound field Ω around a scattering
object from an enclosing microphone array. The incident sound field is
propagated from a sound source outside the microphone array. The boundary
S of the scattering object has the acoustic impedance. n is normal vector on
the boundary S.

the wave equation and Neumann boundary condition using 32
microphones [14]. However, the problem of the case where the
scattering object is not rigid, i,e., where the acoustic impedance
of the object is not infinite, has not been investigated.

In this study, based on the PINN, we propose an estimation
method of the scattered sound field around a object with
the acoustic impedance. The proposed method introduces the
Helmholtz equation and the boundary condition into the loss
function. Notably, in this study, the acoustic impedance of
each boundary element is assumed to change smoothly with
respect to adjacent boundary elements. Then, we introduce a
loss function such that the differences between the acoustic
impedance of the neighbor boundary elements become zero.
Thus, we will model and estimate the scattered sound field
from a object with an arbitrary acoustic impedance.

The rest of this paper is organized as follows. Section II
describes the problem statement and proposed method. Sec-
tion III-A describes the simulation conditions. Section III-B
describes the results of three simulation experiments. Finally,
we conclude this work in section IV.
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Fig. 2. Network architecture of proposed method. Input is three-dimensional coordinates, σ is the activation function, ℜ{p} and ℑ{p} are real and imaginary
parts of complex sound pressure, respectively.

II. PROPOSED METHOD

A. Problem Statement

Fig. 1 shows the concept of the problem of scattered sound
field estimation. This study estimates the three-dimensional
scattered sound field Ω around a scattering object with
spatially-smooth absorption coefficients. We assume that the
sound sources are located outside the region Ω and outside
the microphone array. That is, since the sound field in Ω is
homogeneous, the Helmholtz equation [15] holds as follows,

k2p(x) +∇2p(x) = 0 (x ∈ Ω) (1)

where k is wave number, ∇ is the Laplacian operator and
p(x) is the sound pressure p(∈ C) at the position x(∈ R3).
The N measurement points at position xn(n = 1, 2, ..., N) are
positioned around the scattering object in the region Ω.

A acoustic impedance is defined at the boundary of the
scattering object in Ω and is represented as follows.

Z(x) =
p̂(x)

v(x)
(x ∈ S) (2)

where v is normal particle velocity to the boundary S, p̂ is
sound pressure on the boundary. In this study, the acoustic
impedance Z(x) on S is assumed to be approximately uniform.

B. Proposed Method

Raissi et al. proposed a PINN, which introduces the gov-
erning equations into the loss function [9]. This study uses
the Helmholtz equation as the governing equation to obtain an
output that follows the laws of sound propagation. In addition,
the proposed method introduces the boundary conditions into
the loss function.

The proposed method employs the SIREN architecture [16]
to perform higher-order derivatives of the loss function. Fig. 2

shows the network architecture of the proposed method. Us-
ing multilayer-perceptron (MLP), the function ϕ(·) and the
estimated sound field p̂(x) is represented as follows:

p̂(x) = ϕ(w,x) = (fL ◦ fL−1, ..., ◦f2 ◦ f1) (3)

where x = (x, y, z) is the coordinates as input and w is the
weights. fl is the function of the l-th layer of MLP. Then, the
Helmholtz equation in (1) must be hold on the estimated sound
pressures p(x). In other words, the model should be trained
so that the outputs satisfy the laws of acoustic physics.

As shown in (1), the Helmholtz equation has the second
derivative of p. ReLU, one of the typical activation functions, is
not appropriate for calculating the Helmholtz equation because
it becomes zero after second-order differentiation. To obtain
the derivatives by the automatic differentiation, it is required to
choose the activation functions that are two-time differentiable.
Thus, in this study, we use the sine function as an activation
function. The MLP with sine activation function is known as
the SIREN architecture [16]. Other examples include the use
of hyperbolic tangent functions for activation functions [14].

By using the sine function, the l-th layer function fl in (3)
is as follows:

fl(xl) = sin (ω(xlwl + bl)) (4)

where xl is the input of l-th layer, wl is the weight parameter,
bl is bias of l-th layer and ω is hyperparameter.

To determine the weight parameter w, the PINN introduces
a law of physics or a governing equation into the loss function
L. By also using the complex sound pressures measured at the
microphone positions, the loss function L is defined by

L = Ldata + λ1Lpde + λ2Lbc (5)

Ldata =
1

N

N∑
n=1

|p̂(xn)− p(xn)|2 (xn ∈ Ω) (6)
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Fig. 3. Comparison of scattered sound fields and NMSE distributions (z = 0) at frequency is 2 kHz. (a) Ground Truth, (b) Estimated sound field by CS. (c)
Estimated sound field by PINN ( without Lbc), (d) Estimated sound field by the proposed method, PINN-BC (with the loss of boundary condition Lbc), (e)-(g)
are NMSE distributions by CS, PINN and PINN-BC, respectively. The number of microphone for the estimation was 32. The circle at the center indicates the
scattering object.

TABLE I
SIMULATION CONDITION

Frequency [Hz] 2000
Absorption rate 0.5
Radius of scattering object [m] 0.1
Number of microphones 16×2, 25×2, 36×2
Radius of microphone array [m] 0.2, 0.25
Balance parameterλ1, λ2 10−4, 1.0

Lpde =
1

M

M∑
m=1

∣∣k2p̂(x′
m) +∇2p̂(x′

m)
∣∣2 (x′

m ∈ Ω) (7)

Lbc =
∑
e∈E

∑
e′∈E′

|Z(x′′
e )− Z(x′′

e′)|
2

(x′′
e,x

′′
e′ ∈ S) (8)

where ∥ · ∥2 is ℓ2 norm, p̂ and p are estimated and measured
sound pressures, respectively. λ1, λ2 are balance parameters.
xn is the microphone position, x′

m is three-dimensional co-
ordinates selected randomly, x′′

e is the point on the boundary
of scattering object, x′′

e′ is a point neighbor to x′′
e.

Ldata is a loss function to calculate MSE between the esti-
mated and measured sound pressures. Lpde is a loss function
to evaluate how well the estimated sound pressures satisfy the
Helmholtz equation, as shown in (1). Lbc is a loss function to
evaluate the difference in acoustic impedance at the neighbor
points. Thus, by learning the weight parameter w so that
Lpde and Lbc become small, the output of the MLP will
more closely follow the Helmholtz equation and the boundary
condition.

III. SIMULATION EXPERIMENT

A. Simulation Condition

We conducted the simulation experiment to evaluate the
accuracy of estimating the scattered sound field around a
sphere with a radius of 0.1 m in three dimensions. For the

ground truth, the analytical solution [17] was calculated with
spherical harmonics. The center of the scattering sphere object
is the origin of the coordinate system. For Ldata, the equally-
spaced spherical microphone array had two layers with radii
of 0.2 m and 0.25 m. The microphone array was positioned at
the origin. The numbers of microphones were M = 32, 50, 72.
The sound speed was 343 m/s, and the source position is placed
at (x, y, z) = (2, 0, 0) m. We employ the Adam optimizer with
a learning rate of 1.0 × 10−5 for 15000 epochs. The number
of randomly selected positions M for Lpde is 10000 at each
epoch. The number of boundary elements for Lbc is 400 with
equal spacing on the surface S. The weight parameters λ1 and
λ2 are 1.0 × 10−4 and 1.0, respectively. The other details of
simulation conditions are shown in Table I.

To evaluate the accuracy of the scattered sound field, we
defined the normalized mean squared error (NMSE) as

NMSE = 10 log10

∫
|p̂(x)− p(x)|2 dx∫

|p(x)|2 dx
. (9)

B. Result

First, we compare the estimation accuracies of the proposed
method (PINN–BC) and the two conventional methods: equiv-
alent source method (CS) [3], [5] and PINN with no bound-
ary condition (PINN). In CS, the scattered sound field was
modeled from the 32 microphones using the sparse equivalent
source method.In simple PINN, the model was trained without
using the loss of boundary condition Lbc (8).

Fig. 3 shows the comparison of scattered sound fields and
NMSE distributions at 2 kHz by CS, simple PINN, and
PINN–BC (proposed method) when 32 microphones were
used. From Fig. 3 (a)–(d), it is evident that simple PINN
and PINN–BC were able to estimate the scattered sound field
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Fig. 4. Comparison of scattered sound fields and NMSE distributions (z = 0) by the number of microphones. (a) Ground Truth, (b) and (e) 72 microphones,
(c) and (f) 50 microphones, (d) and (g) 32 microphones.

TABLE II
COMPARISON OF MEAN NMSES ON THE X-Y PLANE AND IN

THREE-DIMENSIONAL EVALUATION POINTS

CS PINN PINN–BC
Mean NMSE (z = 0) 0.2 dB −5.1 dB −8.3 dB
Mean NMSE (3D) 0.0 dB −3.9 dB −8.5 dB

significantly closer to the ground truth compared to CS. From
Fig. 3 (e)–(g), PINN and PINN–BC significantly improved the
estimation accuracies over the estimation region compared to
CS. Furthermore, compared to simple PINN, PINN-BC has
significantly improved the accuracy of estimating the scattered
sound field, especially at locations opposite the sound source.

Table II shows the comparison of mean NMSEs on the x–y
plane (z = 0) and in the three-dimensional evaluation points.
For the z = 0 plane, the evaluation region was a square with
0.4 m on each side. For the 3D evaluation points, a spherical
region between a radius of 0.1 m and 0.4 m was used as the
evaluation region. On the z = 0 plane, the mean NMSEs of
PINN and PINN–BC were improved by approximately 5.3 dB
and 8.5 dB, respectively, compared to CS. Furthermore, in
three-dimensional evaluation points, the estimation accuracy
of PINN–BC was more stable than the other methods, with an
estimation accuracy of −8.5 dB, approximately equivalent to
the accuracy of the z = 0 plane. The proposed method achieves
an improvement in accuracy of 4.6 dB NMSE compared
to PINN and 8.5 dB NMSE compared to CS. Therefore,
the proposed method improved the estimation accuracies of
scattered sound fields by introducing the boundary condition
into the loss function.

Second, we compare the estimation accuracies by the num-
ber of microphones in the proposed method. Fig. 4 shows
the estimated sound fields and NMSE distributions with 32,
50, and 72 microphones. As shown in Figs. 4(a)–(d), it was
found that the scattered sound field can be estimated with

high accuracy regardless of the number of microphones. From
Figs. 4 (e)–(g), as the number of microphones decreased,
the estimation accuracies were significantly degraded over
the entire region. However, it is clear that even with 32
microphones, the high estimation accuracy was maintained on
the opposite side of the sound source. Based on these results,
the number of microphones should be increased according to
the desired estimation accuracy.

IV. CONCLUSIONS

In this study, we proposed a method for estimating the
scattered sound field from a small number of microphones
using a physical model and deep learning. From the simulation
experiments, the proposed method significantly improved the
estimation accuracy by approximately 4.5 dB in NMSE when
boundary conditions are introduced into the loss function as an
additional physical model. From the other simulation experi-
ments, it was found that the estimation accuracy significantly
decreased with the number of microphones. However, even
with a small number of microphones, it was found that it is
possible to estimate a wide range of scattered sound fields.

In future work, we will study the estimation of scattered
sound fields in the broad frequency band. Furthermore, we will
estimate the scattered sound field around more complicated
shapes of scattering objects. We also aim to evaluate the
estimation accuracy in actual measurements and environments.
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