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Abstract—We aimed to construct a robust feature extractor for
singer verification using a straightforward method that leverages
the unique characteristics of singing voices. The speaker feature
extractor based on ECAPA-TDNN needs to be trained to identify
numerous speakers using voice data that vary within the same
speaker and to distinguish voices that sound similar but belong
to different speakers. However, collecting singing voice data is
challenging, particularly when constructing a corpus with a
large number of singing samples from the same singer. In this
study, we address this problem by adopting a simple approach:
segmenting singing voices before inputting them into ECAPA-
TDNN during training. The validity of this approach arises not
merely from increasing the amount of data, but from the inherent
characteristics of singing voices. Specifically, compared to spoken
voices, singing voices exhibit less acoustic variation over short
periods but greater variation over long periods. By utilizing
short segments of singing voices for training, we can develop
a feature extractor that is robust to acoustic variations within
the same singer. Our experiments demonstrate the effectiveness
of the proposed approach of segmenting singing voices into three-
second intervals for training and provide insights that this method
does not yield the same benefits for spoken voices, highlighting its
unique effectiveness for singer verification using singing voices.

I. INTRODUCTION

Speaker verification technology, which determines whether
different voice inputs belong to the same speaker, has been
extensively studied for practical applications. However, most
of these studies focus on spoken speech [1]–[5]. Conversely,
achieving high accuracy in singer verification using singing
voices could enable the creation and viewing of singing his-
tories without requiring user registration. Additionally, singer
verification can be seen as a technology that facilitates the
comparative evaluation of acoustically similar singing, allow-
ing for the recommendation of songs that are easier for users to
sing (i.e., songs frequently sung by people with similar voices).
Nevertheless, in contrast to the well-developed and extensively
researched speaker verification technology for spoken speech,
singer verification technology for singing voices has not been
sufficiently explored [6]–[8].

In general, speaker verification involves using deep neural
networks (DNNs) such as ECAPA-TDNN [9] or ResNet [10],
[11], which are designed to identify numerous speakers from
long-duration voice inputs. The similarity of the obtained
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Fig. 1. Proposed strategy for building singer feature extractor robust to
acoustic variability, compared to conventional strategy for training speaker
feature extractor. In our approach, singing voice is first segmented into short,
stationary signal intervals (e.g., three seconds) and then used to train ECAPA-
TDNN to perform singer identification using these segments.

speaker feature representations is then calculated using co-
sine distance [3] or probabilistic linear discriminant analysis
(PLDA) [12], [13]. Specifically, speaker feature representations
are obtained by accumulating and statistically processing local
acoustic information extracted through convolutional layers
over extended periods (attentive pooling) [14]. Ideally, the
speaker feature extraction process should compact the acoustic
data distribution of the same speaker (reducing false rejections)
and separate the acoustic data distribution of different speak-
ers (reducing false acceptances). To accurately achieve such
functionality, it is crucial to train DNNs to identify numerous
speakers using voice data that vary within the same speaker
and voices that sound similar but belong to different speakers.
However, for singing voices, there is no well-prepared corpus
that meets these requirements, and it is particularly challenging
to provide a large number of singing samples from the same
singer.

In contrast, this study seeks to address the problem using a
straightforward approach that effectively leverages the unique
characteristics of singing voices. Singing and spoken voices



have significant differences in their properties. Spoken voices
exhibit substantial acoustic variation over short periods due to
phonetic differences, but this variation seldom changes dramat-
ically. Conversely, singing voices show relatively less acoustic
variation over short periods but display greater acoustic vari-
ation over long periods due to singing techniques and song
structures. To capitalize on these characteristics, this study
proposes dividing singing voices into short, steady-state signals
and using these as inputs to train an ECAPA-TDNN for singer
identification (as illustrated in Figure 1). Given the nature
of singing voices, it is expected that although the numerous
short signals are individually steady-state, they will exhibit
significant variation in the embedding space produced by
the ECAPA-TDNN. Consequently, training the singer feature
extractor in this manner is anticipated to yield robust singer
feature representations that are resilient to acoustic variations
within the same singer and sensitive to acoustically similar
inputs from different singers.

By comparing the results of training ECAPA-TDNN using
entire songs versus segmented singing voices, we aim to clarify
the effectiveness of the proposed approach. Additionally, we
will conduct experiments by segmenting spoken voice inputs
and feeding them into ECAPA-TDNN to demonstrate that
the proposed approach specifically addresses issues unique to
singing voice verification. The contributions of this study are
as follows:

• Provide insights into the differences between singing and
spoken voices.

• Present a simple approach to significantly reduce false
rejections in singer verification.

• Demonstrate the effectiveness of the proposed approach
through experiments using a large-scale karaoke singing
voice dataset and provide insights into the differences
from speaker verification using spoken voices.

The findings from this study are expected to be valuable
for researchers and engineers who wish to develop singer
verification systems more easily.

The remainder of this paper is organized as follows. Sec-
tion II explores the acoustic differences between spoken and
singing voices. Section III details the singer verification system
employed in this study. Section IV presents the singer veri-
fication experiments conducted using karaoke singing voices
and evaluates the effectiveness of training the feature extractor
with segmented voice inputs. Finally, Section V provides this
study’s conclusion.

II. DIFFERENCES IN ACOUSTIC VARIATIONS BETWEEN
SPOKEN AND SINGING VOICE

In general, singing voices exhibit less acoustic variation over
short periods compared to spoken voices. Figure 2 shows his-
tograms of acoustic variation within short segments of spoken
and singing voices. The acoustic variation for short segments
was measured by calculating the variance of mel-frequency
cepstral coefficients (MFCCs) using a 25-millisecond frame
size and a 10-millisecond frame shift for each three-second
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Fig. 2. Histogram of intra-singer and intra-speaker acoustic variations over
short periods for singing and spoken voices.
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Fig. 3. Histogram of intra-singer and intra-speaker acoustic variations over
long periods for singing and spoken voices.

segment. These variance values were then averaged for each
speaker or singer, with the analysis performed on data from
100 individuals. The histograms indicate that acoustic variation
within short segments is smaller for singing voices than for
spoken voices.

Conversely, due to significant changes in melody and pitch
throughout different parts of a song, acoustic variation over
long periods is greater for singing voices compared to spoken
voices. Figure 3 represents histograms of acoustic variation
over long segments, which were computed as the variance
within each speaker of the mean MFCCs calculated for each
three-second frame. This graph demonstrates that acoustic
variation over long periods is greater for singing voices than
for spoken voices.
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TABLE I
STRUCTURE OF ECAPA-TDNN.

Index DNN Module Input Dim. Output Dim.

1 TDNNBlock 80× T 1024× T
2 SE-Res2Block 1024× T 1024× T
3 SE-Res2Block 1024× T 1024× T
4 SE-Res2Block 1024× T 1024× T
5 TDNNBlock 3072× T 3072× T
6 AttentiveStatisticsPooling 3072× T 256
7 Conv1d 256 192

III. SINGER VERIFICATION

A. ECAPA-TDNN

We focus on utilizing a widely adopted speaker verification
system for singer verification, leveraging ECAPA-TDNN [9]
for embedding singer information from singing voice data and
employing cosine similarity scoring for verifying singers [3].

The ECAPA-TDNN-based feature extractor, configured with
the parameters detailed in Table I, is first trained using our
singing voice database (see Section IV-A). The intermedi-
ate layer outputs are then extracted as singer embeddings,
which are subsequently used for cosine similarity scoring.
ECAPA-TDNN incorporates attentive pooling and Squeeze-
and-Excitation (SE) blocks [15] to enhance the learning of
relevant features within the model. Additionally, by combining
the outputs not only from the preceding layer but also from
shallower layers during the pooling process, ECAPA-TDNN is
expected to capture more robust singer embeddings.

Increasing the number of identification classes in this net-
work is expected to capture finer distinctions among speakers,
potentially reducing the false acceptance rate. However, if the
data available for each singer is insufficient, it may hinder
the model’s generalization, potentially leading to an increased
false rejection rate.

B. Proposed Training Strategy for Singer Feature Extractor

In speaker verification tasks involving spoken voice, shorten-
ing the input length for ECAPA-TDNN is generally not recom-
mended. Spoken voice exhibits significant acoustic variations
over short periods, as phonemes change within a few hundred
milliseconds, but the overall acoustic variation across an entire
utterance is relatively small. In contrast, this study on singer
verification seeks to train the ECAPA-TDNN using singing
voice samples segmented into short durations. As discussed
in Section II, singing voice typically shows minimal acoustic
variation over short periods but significant variation over the
duration of an entire song. Because of this characteristic,
short segments of the same song may display considerable
variability in the embedding space. By intentionally increasing
the acoustic variability within the same singer’s samples during
training, we aim to create an optimal feature embedding for
singer verification: it suppresses intra-singer acoustic variations
while effectively distinguishing between different singers.

In this approach, whether the entire song or segmented
portions are used as input, the total amount of training data

remains the same. However, capturing the precise acoustic
variations across an entire song in the averaged embedding
representation after TDNN pooling is likely to be limited.
Segmenting the singing voice offers a simple and effective
approach to overcoming this limitation.

IV. SINGER VERIFICATION EXPERIMENTS

To evaluate the effectiveness of the proposed approach, we
conducted singer verification experiments using a custom-built
singing voice corpus. In the first experiment, we compared the
verification performance of ECAPA-TDNN when trained with
segmented singing voice inputs versus entire song inputs. In
the second experiment, to elucidate the differences between
singing and spoken voices, we compared the verification
performance for spoken voices using segmented versus un-
segmented inputs during the training of ECAPA-TDNN.

A. Database

To conduct a singer verification experiment, we compiled
a comprehensive database of Japanese singing voices. This
dataset includes 4950 songs performed by 1666 amateur
singers in karaoke settings. Of the 1666 participants, 1000
singers performed only one song, 225 sang two songs, and 136
sang three songs. The recordings were made using directional
microphones installed in karaoke booths, capturing the singing
voices with minor contamination from background music,
other voices, and reverberation.

B. Experimental Setups

The singing voices used in the experiment were sampled at
16 kHz and quantized into 16-bit data. To mitigate the impact
of noise, particularly from background music, we performed
data augmentation for training singer embeddings using rirs-
noises [16] and MUSAN [17], which include human voices,
environmental sounds, and music as noise sources. The training
of the ECAPA-TDNN model [9] utilized our singing voice
dataset, which comprised 3500 songs performed by 441 singers
(each singing three or more songs).

For the enrollment and verification phases, we used singing
voice data from 225 singers, with each singer contributing two
songs―one for enrollment and the other for verification. The
total number of trials was determined by the combinations of
enrollment and verification data for the 225 singers, resulting in
225×225 trials. Notably, the enrollment and verification data
were sampled from different songs. We computed similarity
scores for all possible pairs of data, and the evaluation was
based on the Equal Error Rate (EER) and the minimum
Decision Cost Function (minDCF). Both the training and
inference processes were conducted using the SpeechBrain
toolkit [18].

C. Experiment 1

1) Experimental Procedure: To assess the effectiveness of
dividing singing voice data into segments of N seconds for
training a singer feature extractor, we compared the verification
performance for segment lengths of 3 seconds, 10 seconds, and
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Fig. 4. False rejection rate (FRR) and false acceptance rate (FAR) as function of threshold for cosine similarity.

TABLE II
EQUAL ERROR RATE FOR VARIOUS LENGTHS OF TRAINING AND

VERIFICATION DATA. ENTIRE SONG (FULL) WAS USED FOR ENROLLMENT
DATA.

Length of
Training Data

Length of Verification Data

full 30s 10s

full 1.72 2.92 9.33
30s 2.22 2.85 7.53
10s 1.78 2.67 4.44
3s 1.33 2.76 3.97

TABLE III
NUMBER OF FALSE REJECTIONS AND MINDCF. CMISS AND CFA

REPRESENT COSTS ASSOCIATED WITH MISSED DETECTION ERRORS AND
FALSE ALARMS, RESPECTIVELY.

Length of
Training Data

Number of
False Rejections

minDCF
(Cmiss = 2, Cfa = 1)

full 29 0.15
30s 21 0.13
10s 22 0.11
3s 23 0.14

30 seconds with the performance obtained without segmenta-
tion. We ensured that the sample count of the training data
remained constant regardless of N by overlapping the segmen-
tation windows. Additionally, to examine the effects of varying
input audio lengths between enrollment and verification data,
we evaluated verification performance using the entire song,
the first 10 seconds, and the first 30 seconds for the verification
audio, while the entire song was used for the enrollment audio.

2) Experimental Results: Table II presents the verification
performance for various lengths of training and verification
data. The results demonstrate that training the feature extractor
with short, segmented singing voice data (three seconds)
directly enhances verification performance, regardless of the
input length of the verification data. Additionally, using an
entire song for both enrollment and verification data yielded
the best performance, with an EER of 1.33. These findings
suggest that while using longer-duration data for enrollment
and verification enhances the reliability of the verification pro-
cess, a feature extractor trained on short, segmented audio can
effectively capture precise (capable of distinguishing between
similar but different singers) and robust (suppressing acoustic
variations of the same singer) singer features.

TABLE IV
EER FOR TRAINING DATA LENGTH IN SPEAKER VERIFICATION.

Length of Training Data EER

full 1.48
3s 1.41

When applying singer verification to build and reference
individual singing histories in karaoke, minimizing false re-
jections is essential. In particular, ECAPA-TDNN trained with
short, segmented singing voice data effectively reduced false
rejections. Figure 4 illustrates the false rejection rate (FRR)
and false acceptance rate (FAR) as the threshold for cosine
similarity in verification is varied in increments of 0.05 for
each input length of the singing voice data used in training
(entire song, 3 seconds, 10 seconds, 30 seconds). The results
show that the integral of the FRR curve is smallest when
the training data input length is 3 seconds, and it increases
progressively as the input length extends to 10 seconds, 30
seconds, and an entire song.

Table III presents the minDCF values, adjusted to prioritize
the reduction of false rejections (with the false rejection rate
weighted twice as heavily as the false acceptance rate), along
with the corresponding number of false rejections at the
adjusted threshold settings. The results show a decrease in
false rejections when using segmented inputs of 30 seconds,
10 seconds, and 3 seconds, compared to using the full-length
song, with 10-second segments achieving the best minDCF
performance. Although Table II indicates that the EER worsens
with 30-second and 10-second segments compared to full-
length inputs, it is important to recognize that these segmen-
tations help reduce false rejections. This suggests that the
observed deterioration in EER is likely due to an increase in
false acceptances.

D. Experiment 2

1) Experimental Procedure: To evaluate whether similar
effects can be achieved with spoken voice data, we conducted
an experiment similar to Experiment 1, where we segmented
spoken voice data and input it into the ECAPA-TDNN model.
Using audio segments longer than six seconds from the
VoxCeleb dataset, we compared the performance of training
with three-second segments to that of training with full-length
audio.
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2) Experimental Results: The results are presented in Table
IV. For spoken voice, the verification performance remained
consistent regardless of whether the audio was segmented.
Due to the relatively stable acoustic characteristics of spoken
voice over long durations, segmenting the audio and inputting
it into the ECAPA-TDNN did not enhance the extraction of
robust speaker features against acoustic variability, and thus did
not impact verification performance. These findings suggest
that the observed improvement in verification performance
from training with short segments is specific to singing voice
data, which exhibits substantial acoustic variation over long
durations.

V. CONCLUSION

In this study, we proposed a straightforward method for
extracting robust feature representations for singer verification
by leveraging the distinct characteristics of singing voice,
which shows minimal acoustic variation over short periods but
significant variation over longer durations compared to spoken
voice. We demonstrated that segmenting the input into shorter
segments for training the feature extractor can effectively
reduce false rejections in singer verification. Furthermore, we
established that this effect is unique to singing voice and does
not extend to spoken voice.
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