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Abstract—In recent years, many methods for simulating acous-
tic fields using deep learning have been proposed. In particu-
lar, neural networks using physical knowledge (PINN: Physics-
Informed Neural Network) have been proposed for the purpose of
solving various acoustic problems with higher accuracy. Many of
the proposed PINN-based methods have achieved the estimation
of a specific sound field. In this study, we propose a data-driven
PINN for the estimation of simulated sound fields in rooms of
arbitrary size with a single model. By using the coordinates and
room size information as the input of PINN, the proposed method
demonstrated a notable improvement in estimation accuracy by
approximately 5.4 dB compared to the simple data-driven model.

I. INTRODUCTION

Sound field simulation has applications in a variety of fields,
including spatial acoustics, architectural acoustics [1], games,
and sound rendering in mixed reality [2]. Sound field simula-
tion methods can be divided into two main categories: simula-
tions based on geometric acoustics [3] and simulations based
on the wave equation [4]–[6]. Ray tracing is a well-established
simulation method based on geometric acoustics [7]. By
modeling sound propagation as rays, the sound field can be
calculated at high speed. In contrast, numerical simulations
that approximate the wave equation provide highly accurate
simulations of sound fields, such as physical wave phenomena
including diffraction and scattering. Previously, many methods
have been proposed, including finite-difference time-domain
method (FDTD) [4], finite-element method (FEM) [5], and
boundary-element method (BEM) [6]. These methods can be
computed with high accuracy, however, they are known to
require a lot of computation time and computational resources.

Consequently, many studies have been conducted to improve
processing speed and reduce the resources required for calcula-
tions. For example, Yoshida et al. achieved a reduction in the
computational time by developing a method for minimizing
the dispersion error that occurs in the time-domain FEM [8].
Wilkes et al. proposed a method for solving broadband sound
fields in parallel using BEM based on fast multipole solu-
tions [9].

In recent years, data-driven deep learning for sound field
simulation has been proposed. These methods learn the prop-
erties of PDEs from a large number of sound fields computed
using conventional numerical simulations based on the wave
equation. A trained model that approximates the PDE allows
for fast simulation of the sound field. Ziqi et al. proposed a
method for estimating the sound pressure of a scattered sound

field from the shape of the scattering object using convolutional
neural networks, which are employed in tasks such as semantic
segmentation. This method was demonstrated to be 100 times
faster than conventional numerical simulations. [10]. Nikolas et
al. have proposed a room sound-field simulation using a deep
operator network [11]. In this method, the user can freely select
the location of the sound source and the listener. Furthermore,
this method can estimate sound pressure within 100 ms.

Furthermore, a deep learning method called a physics-
informed neural network (PINN), which learns based on the
governing equation of physical laws, has been proposed [12]–
[14]. In particular, many PINN studies have been conducted
in acoustics using the wave equation [15]–[19]. Xenofon et al.
applied PINN to sound field reconstruction to achieve more ac-
curate sound field interpolation than compressed sensing [15].
In addition, Xingyu et al. employed the PINN approach to
estimate the acoustic scattering from measured signals with
a limited number of microphones [18]. As shown above the
PINN approach has proven effective in enhancing the precision
of sound field estimation. From previous studies, the PINN
approach is effective in improving the accuracy of sound field
estimation. However, the model must be modified when the
acoustic environment changes, such as when the shape of the
room changes.

In this study, we propose a sound field simulation using
data-driven deep learning with PINN. In particular, this study
estimates the scattered sound field for a room of arbitrary size.
The input of PINN is a single coordinate and a room size. The
output is the sound pressure at the input coordinates in a room
of the input size. For the training dataset, many sound fields
with different room sizes are used. In the simulation exper-
iments, we evaluate the estimation accuracy of the proposed
method with a comparison of the model learned by data only.

The remainder of this paper is organized as follows. Sec-
tion II introduces the problem statement and the proposed
method. Section III presents the simulation experiments for
evaluation in a two-dimensional sound field. Finally, we con-
clude the paper in Section IV.

II. METHOD

A. Problem Statement

To simplify, we consider the two-dimensional sound fields
with a Dirac impulse emitted from a line sound source at
position xsrc = (xsrc, ysrc). Our study focuses on estimating
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Fig. 1. Workflow of the proposed method. The real and imaginary parts of the complex sound pressure at the position (x, y) are estimated from the input vector
q (x, y: two-dimensional plane coordinates, α: information on the room shape). Ldata calculates the mean squared error using the estimated complex sound
pressure and teaching data. Lwave calculates the Helmholtz equation using the Laplacian calculated by automatic differentiation and the estimated complex
sound pressure. By using Ldata and Lwave, the backpropagation is conducted.

complex sound pressure pall(x) at any position x in the
sound field Ω of arbitrary room size. The sound pressure
pall(x)|x ∈ Ω at any position x in the room sound field Ω
follows the Helmholtz equation holds:

(∇2 + k2)pall(x) = −psrc(x), (1)

where, ∇2 = ∂2

∂x2 + ∂2

∂y2 is the Laplacian operator, k is the
wave number and psrc is line sound source.

From the Helmholtz equation in (1) and assumption of
linearity, the sound pressure pall(x) is represented by

pall(x) = psrc(x) + pref(x) (2)

psrc(x) = G(xp,xsrc) (3)

where pref(x) is the reflected sound field. psrc is the direct
sound which is represented by Green’s function G. Further-
more, based on the Kirchhoff–Helmholtz integral, the reflected
sound pref(x) is represented by

pref(x) = −
∫
Γ

(p(xγ)
∂G(x,xγ)

∂n
−G(x,xγ)

∂p(xγ)

∂n
)dΓ,

(4)

where xγ is the position of the boundary Γ of the sound field
Ω and ∂

∂n represents the derivative in the outward normal
direction to the boundary Γ.

In general, the direct sound field can be obtained analytically
with a model such as the Green’s function, for example, in
order to use a simple, well-defined model of the source in
the simulation. In contrast, the reflected sound field depends
on the sound pressure and particle velocity at the boundary
Γ. The boundaries of the sound field considered in this study
correspond to the boundaries between the air and the material,
such as the walls of a room. Therefore, the reflected sound field
depends on the boundary conditions such as the shape and size

of the room and the sound absorption coefficient. Hence, in this
study, only the reflected sound field is the object of estimation,
so pref will be denoted as p in the following sections.

B. Workflow and Input Vector

In this study, based on PINN, we proposed the estimation
method for the complex sound pressure p(x) of the reflected
sound field at coordinate x in a room of arbitrary size. Fig. 1
shows the workflow in the proposed method.

In the proposed method, a multilayer perceptron (MLP)
estimates the real Re(p̂(q)) and imaginary Im(p̂(q)) parts of
the complex sound pressure p̂(q) corresponding to the input
vector q. PINN employs a PDE for the loss function and learns
to consider the physical characteristics of the output. In this
study, since the sound pressure is estimated in a frequency
domain sound field, the Helmholtz equation in (1) is used
as the PDE. Therefore, MLP is learned using Ldata, which
evaluates the error of the estimated sound pressure, and Lwave,
which evaluates the Helmholtz equation using the estimated
sound pressure. This workflow is repeated to create a PINN
model that estimates the complex sound pressure at an arbitrary
point for an arbitrary room size.

In general, PINN is well known for estimating physical
quantities such as sound pressure corresponding to input
coordinates. The input coordinates are not restricted to specific
coordinates such as grid points. Thus, since the model learns
the mapping between the coordinates and the data, if the
relationship between the two changes, a different model will
be required. However, in this study, it is necessary to learn
the reflected sound fields of different room sizes. Thus, in the
proposed method, the room size information is added to the
input vector q = (x, y, α). The scalar α is the information of
room size for the estimated sound field.
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C. PINN Architecture

In this study, the MLP for estimating the sound complex
pressure p̂(q) at any point in any reflected sound fields can be
represented as follows using the function f(·).

p̂(q) = f(w,q) = (ϕN ◦ ϕN−1 ◦ · · ·ϕn ◦ · · ·ϕ1)(q), (5)

where, q represents the input vector and w represents the
learnable weights. ϕ is a function in the N -th layer. In other
words, MLP is represented by a composition function of ϕ.

The function ϕ in the n-th layer is

ϕn(qn) = sin(ω0(qnwn + bn)), (6)

where, the input vector in the n-th layer is represented by qn,
while the learnable weights and biases in this layer are rep-
resented by wn and bn, respectively. ω0 is a hyperparameter
when a sine function is used as the activation function [20].
Since this network can calculate the second-order derivative
through automatic differentiation, the Helmholtz equation is
employed for the PINN loss function. Compared to other
activation functions, such as hyperbolic tangent and rectified
linear units, the Sine function is known to be more accurate
in high-order partial derivatives. Thus, using a sine function
for the activation function, PINN improves the estimation
accuracy [15]–[17].

The loss function L for each α is given by

L = Ldata + λLwave, (7)

Ldata =
1

Mdata

∑
m∈Mdata

|p̂m − pm|2, (8)

Lwave =
1

Mdata

∑
m∈Mdata

|(∇2 + k2)p̂m|

+
1

Mwave

∑
m∈Mwave

|(∇2 + k2)p̂m|, (9)

where λ is the balance parameter. Mdata is a set of sound
pressure indices of training data for each α, Mwave is a set of
sound pressure indices that only calculates Lwave for each α.
pm and p̂m denote m-th ground truth and estimated complex
sound pressure, respectively. Mdata and Mwave are the number
of elements in each set. Ldata calculates the mean squared
error using training data and estimated data of sound pressure
(p̂m ∈ Mdata). Lwave is a loss function for learning so that
the sound pressure satisfies the laws of physics, based on the
homogeneous Helmholtz equation.

III. EXPERIMENTS

In this experiment, we compare the estimation accuracies
with the proposed method and simple MLP only using the
loss function in (8).

TABLE I
CONDITION OF BEM

Sound speed [m/s] 340
Frequency [Hz] 500
Sound source coordinates (0, 0)
Normal incidence sound absorption coefficient 0.5

A. Experiment Condition

The pair data of input vector q and complex sounds pressure
p(q) were used as the training dataset. For the training data,
the reflected sound fields at 500 Hz were calculated by the
BEM [21]. Table I shows the simulation conditions of the
BEM. The spacing between boundary elements was 0.1 m
(approximately 1/6 of the wavelength) or less. To simplify
the problem, the experiment was conducted with the sound
fields in square rooms. The length of one side of the square
room was 2–4.5 m. Note that the target region was limited to a
2 m square region centered on the origin, which is part of the
sound field of the square room. The information α is the side
length of the room. A total of 251 sound fields for training
and evaluation were simulated by modifying α in increments
of 0.01 m. Three different datasets were constructed, with
α increments d being set to 0.03 m, 0.04 m, and 0.05 m,
respectively. Experiments were then conducted to compare
these data sets, which contained 84, 63, and 51 data numbers,
respectively. The test dataset for evaluation is other than the
data used for training.

For datasets, the input coordinates were chosen randomly,
the number Mdata(α) was (α/0.2)2 such that the density was
1/0.04 m2 per the room side length α. In other words, the
each sound field was discretized by about 1/3 of a wavelength.
For the purpose of comparing methods of determining input
coordinates, the other test dataset was created with a grid
of 0.1 m intervals for the input coordinates. The number of
coordinates Mwave was the same as Mdata. The coordinates
for calculation of the loss Lwave were randomly determined for
each iteration. The input coordinates, complex sound pressure,
and α were normalized within the range of −1 to 1.

The network was a five-layer MLP comprising 256 neurons
in each layer. The optimization method employed Adam, with
a learning rate of 1.0× 10−5. The hyperparameter ω0 was set
to 30, and the balance parameter λ was set to 1.0×10−3. The
batch processing was conducted for each room size α. The loss
for validation was calculated for every 10 epochs on the test
dataset with random coordinates. The model with the smallest
loss value within 200 epochs was used for evaluation.

The accuracy of the estimated sound field was evaluated
using the following signal-to-noise ratio (SNR).

SNR = 10 log10
|p(x)|2

|p(x)− p̂(x)|2
(10)

where, p(x) is ground truth at position x. p̂(x) is the estimated
sound pressure.
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Fig. 2. Comparison of estimated sound fields at α = 2.350 m with a model trained on a dataset with spacing d = 0.04 m. The estimation region is [−11]
m. (a) Ground truth calculated by BEM, (b)–(c) and Estimated sound fields by MLP and PINN (proposed method), (d) and (e) SNR distributions by MLP and
PINN

TABLE II
MEAN SNR OF THE MODEL TRAINED BY RANDOM COORDINATE DATASET

Increment d 0.03 m 0.04 m 0.05 m
MLP 9.6 dB 7.4 dB 5.8 dB
PINN(Proposal) 13.5 dB 12.8 dB 11.2 dB

TABLE III
MEAN SNR OF THE MODEL TRAINED BY GRID COORDINATE DATASET

Increment d 0.03 m 0.04 m 0.05 m
MLP 9.0 dB 7.1 dB 5.4 dB
PINN(Proposal) 12.9 dB 12.2 dB 10.6 dB

B. Results

Models were created using three training datasets with
different increments d of α. Table II and Table III show the
mean SNR for the test dataset.

From Table. II, the proposed method improved the esti-
mation accuracy with all three models compared to MLP.
When d = 0.04 and 0.05 m, the proposed method improved
the estimation accuracy by 5.4 dB. When d = 0.03 m, the
difference in estimation accuracy between MPL and PINN was
3.9 dB smaller compared to d = 0.04 m and 0.05 m. Thus,
the difference in estimation accuracy between MLP and PINN
tended to become smaller as d became smaller, i.e., as the
number of training data increased.

From Table. III, the proposed method with the model trained
by grid coordinates slightly decreased the estimation accuracy
by 0.6 dB compared to the random coordinates in Table. II.
However, the proposed method improved the accuracy by 3.9

dB, 5.1 dB, and 5.2 dB at d = 0.03, 0.04, and 0.05, respectively.
Fig. 2 shows the estimated sound field at α = 2.350 m

utilizing a model trained by the dataset with d = 0.04 m.
From Figs. 2(a)(b), the estimated sound field by MLP, data-
driven models, was significantly degraded over the estima-
tion region. From Figs. 2(a)(c), the sound field estimated by
PINN closely approximates the ground truth, compared to
MLP. From Figs. 2(d)(e), the proposed method significantly
improved the SNR distribution compared to MLP. In this
condition, the mean SNRs of MLP and PINN were 7.4 dB
and 14.7 dB, respectively. Thus, the PINN improved mean
SNR by 7.3 dB than MLP.

IV. CONCLUSIONS

In this study, we proposed the estimation method for the
sound field of arbitrary room size based on PINN and data-
driven MLP. From the experiments, it is clear that the proposed
method can estimate the sound field of a room of a size
not included in the training with higher estimation accuracy
than a model learned from data only. We also found that
PINN improves estimation accuracy compared to MLP with
smaller numbers of training data. Furthermore, the utilization
of coordinates as input vectors enables the estimation of the
sound field without the constraints imposed by grids.

In future work, to model more general sound fields, we will
investigate PINN using the other characteristics of the sound
field as input, such as the sound absorption coefficients and
the position of the sound source.
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