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Abstract— This paper proposes a B-format Ambisonic room 

impulse response (RIR) generator based on a conditional 

generative adversarial network (CGAN). The B-format RIR is a 

first-order Ambisonics (FOA) representation of the RIR used for 

creating spatial audio for virtual reality (VR) applications. The 

neural network produces FOA RIRs for specific VR rooms based 

on given receiver and source positions, and room dimension. The 

CGAN is trained using real-world FOA RIR recordings, with 

generative adversarial loss and other loss functions. These loss 

functions include the frequency-domain multi-resolution short-

time Fourier transform (MRSTFT) loss function and various 

acoustic parameters, such as reverberation time (RT), early decay 

time (EDT), and direct-to-reverberant ratio (DRR). Adaptive 

weightings are applied to balance the importance of different loss 

functions. Objective evaluation metrics include mean squared 

error, MRSTFT, RT, EDT, DRR, DROQM for listening quality 

and direction of arrival accuracy. The results show that utilizing 

acoustic parameters as loss functions effectively controls these 

metrics, resulting in high-quality FOA RIRs.   

I. INTRODUCTION 

In the application of virtual reality (VR), spatial audio is critical 

to ensure an immersive listening experience. Simulating spatial 

audio within rooms requires convolution of the sound source 

with the room impulse response (RIR) between the receiver and 

source positions. A first-order Ambisonic (FOA) RIR is a B-

format array recording. The FOA RIR is beneficial for 

rendering spatial audio in VR environments corresponding to a 

listener’s changing position and look direction relative to the 

source, known as six degrees of freedom spatial audio. 

For streaming VR applications, it can be impractical to 

record and transmit the RIR for every possible listening 

position in a virtual room. Alternatively, RIRs for the chosen 

source and receiver positions can be synthesized based on 

acoustic signal processing models that utilize knowledge of the 

room geometry and wall reflection and absorption coefficients. 

The well-known image method [1] works well for shoebox 

room models while more complex methods are required for 

rooms with irregular geometries and containing reflective 

surfaces other than walls (e.g. furniture). However, these 

simulators can be too computationally complex to quickly 

update the RIR to match a listener’s moving position in a virtual 

room. Alternatively, interpolation approaches applied to the 

FOA RIR can be used to produce an interpolated FOA RIR at 

a new position [2], [3], [4], [5] using the sound source direction 

information derived from the FOA RIR channel relationships. 

While promising, these approaches still require regular 

transmission of two or more FOA RIRs to facilitate the 

interpolation of new FOA RIRs matching the listener’s position. 

In addition, accurately simulating the specular and diffuse 

reflections for a given room is difficult for conventional FOA 

RIR synthesis. 

Recently, neural network approaches have been proposed for 

generating RIRs corresponding to arbitrary receiver and source 

positions in a room. Generative adversarial networks (GAN) 

[6] are widely applied in image generators, composed of two 

models, generator G and discriminator D, trained in a back-and-

forth manner to challenge each other. WaveGAN is the first 

attempt to generate raw-waveform audio based on GAN [7]. As 

an extension, IR-GAN is proposed as a WaveGAN based RIR 

generator [8]. However, [8] does not control the acoustic 

characteristics of RIR (e.g. reverberation time 60 (RT60)) 

during the training session. Conditional generative adversarial 

net (CGAN) is introduced as an extension of GAN, to ensure 

that generated data (e.g. images) is constrained according to 

match certain desirable criteria [9]. For example, 

Image2Reverb synthesizes RIRs using a CGAN using images 

of acoustic environments as input [10]; FAST-RIR is a fast 

diffuse RIR generator with the inputs including receiver 

positions, source positions, room dimensions, and room 

acoustics parameters [11]; and MESH2IR generates RIRs using 
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a three-dimensional (3D) scene mesh of the room, based on the 

FAST-RIR architecture [12]. These methods focus on 

improving the augmentation of far-field automatic speech 

recognition. Considering RIR interpolation on a spatial grid 

application, SoundNeRirF adopts multi-layer perceptrons 

(MLPs) to predict a forward RIR for the target position based 

on the 3D position of reference and target receivers [13]. 

Existing approaches aim to generate a mono RIR, while the 

proposed approach fills the gap to generate FOA RIRs. 

Main Contributions: (1) The CGAN-based neural FOA RIR 

generator is introduced to generate plausible FOA RIRs at the 

chosen receiver position, source position and room dimension 

in the given acoustic environment using various combinations 

of loss functions. Without transmitting the known FOA RIRs, 

this approach improves the transmission efficiency by simply 

inputting the receiver position and source position to generate 

a new FOA RIR. (2) Frequency-domain multi-resolution short-

time Fourier transform (MRSTFT) and multiple key acoustic 

parameters including RT30, early decay time (EDT), and 

direct-to-reverberant ratio (DRR) are investigated to find the 

best performance of losses combination and acoustic parameter 

losses. (3) Adaptive weightings are implemented to balance the 

main loss and auxiliary losses. (4) The model is trained using 

recordings of FOA RIRs from a real-world room, while existing 

literatures in this field mostly work on synthetic mono RIR 

datasets only or their synthetic mixture with real-world 

recorded datasets [8], [11], [12], [13]. Evaluations compare the 

difference between the recorded FOA RIRs and the generated 

FOA RIRs at the same pair of receiver positions, source 

positions and room dimensions using measures of mean 

squared error (MSE), MRSTFT, RT30, EDT and DRR, along 

with DROQM (for listening quality (LQ)) [14] and direction of 

arrival (DOA) accuracy of direct sound (DS) [15]. 

II. PROPOSED SYSTEM 

The GAN has been shown to generate realistic audio 

waveforms [7]. Here, a CGAN is used as the basis for the 

proposed generator to learn the specular and diffuse reflections. 

The proposed network takes the receiver position, source 

position and room dimension, represented in 3D Cartesian 

coordinates ( 𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 ), (𝑥𝑠 , 𝑦𝑠, 𝑧𝑠)  and (𝑙𝑟 , 𝑤𝑟 , ℎ𝑟) , as the 

vector embedding 𝜀𝑝 = (𝑥𝑟 , 𝑦𝑟 , 𝑧𝑟 , 𝑥𝑠, 𝑦𝑠 , 𝑧𝑠, 𝑙𝑟 , 𝑤𝑟 , ℎ𝑟) . Each 

vector embedding is obtained directly from the real-world 

recorded dataset. The output is one-dimensional (1D) raw-

waveform FOA RIR with four channels in Ambisonic channel 

number (ACN) order W, Y, Z and X. The sampling frequency 

of the generated FOA RIR is 16 kHz, with the length being 

8192. The architecture of the proposed model is modified from 

FAST-RIR [11] that is based on the Stage-I structure of 

StackGAN [16]. Input of the proposed network is the vector 

embedding 𝜀𝑝. The target real-world recorded FOA RIR is the 

1D signal with four channels, similar to image inputs with RGB 

channels. The size of an input signal is set to (32, 4, 8192), 

corresponding to batch size, channel and height, so that the 

Dataloader is capable of inputting and outputting 1D FOA RIR 

(4, 8192), 4 arrays with each length being 8192. Another 

upsample layer of generator is also added, compared to the 

FAST-RIR architecture, to adapt the size of the input signal. To 

generate FOA RIRs in any specific position, the proposed 

network controls loss functions including the MRSTFT, RT, 

DRR and EDT. 

A. Generator Modified CGAN Loss 

Conditioned on 𝜀𝑝 , the generator 𝐺  is trained through 

modified CGAN loss to minimise the overall error between the 

generated FOA RIR and real-world recorded FOA RIR. The 𝐷 

represents the discriminator, while the generated FOA RIR is 

𝐩 and the real-world recorded FOA RIR is 𝐩. 

ℒ𝐴𝐷𝑉(𝐺) = 𝔼[(𝐷(𝐩) − 1)2]                                                        (1) 

B. MRSTFT Loss 

The multi-resolution short-time Fourier transform (MRSTFT) 

is widely utilized in audio processing [17], [18], [19] due to its 

effectiveness in capturing the time-frequency distribution of 

realistic waveforms [18]. This approach helps avoid the 

generator's overfitting to a single short-time Fourier transform 

(STFT) representation, which can otherwise degrade 

performance in the waveform domain [17]. In this study, 

MRSTFT is computed using four different STFT resolutions: 

1024, 2048, 512, and 128. The hop size is set to half the length 

of the STFT to enable overlapping segments during the 

transformation process. A Hann window is applied in STFT, 

where |𝔉{∙}|  is the magnitude of a STFT operator that 

converts time-domain sound pressure vectors 𝐩(𝑡) and 𝐩(𝑡), 

into spectrograms of dimension. The MRSTFT loss is 

calculated as the sum of two terms: spectral convergence ℒSC 

and spectral log-magnitude ℒSM  across the various STFT 

resolutions. 

ℒ𝑆𝐶(𝐩, 𝐩) =
∥ |𝔉{𝐩}| − |𝔉{𝐩}| ∥𝐹

∥ |𝔉{𝐩}| ∥𝐹

                                            (2) 

ℒ𝑆𝑀(𝐩, 𝐩) =
1

𝑁
∥ 𝑙𝑜𝑔|𝔉{𝐩}| − 𝑙𝑜𝑔|𝔉{𝐩}| ∥𝐹                          (3) 

ℒ𝑀𝑅𝑆𝑇𝐹𝑇(𝐩, 𝐩) = ∑ ℒ𝑆𝐶(𝐩, 𝐩) + ℒ𝑆𝑀(𝐩, 𝐩)

4

𝑐=1

                          (4) 

C. RT Loss 

The RT loss is based on the standard ISO 3382-1:2009. The 

absolute loss is computed on each channel, and the total loss is 

added together. RT30 is calculated as the time it takes for the 

sound level to decay by 30 decibels (dB) after the sound source 

has stopped emitting. 

ℒ𝑅𝑇30(𝐩, 𝐩) = ∑ |𝐩𝑹𝑻𝟑𝟎 − 𝐩𝑅𝑇30|

4

𝑐=1

                                          (5) 
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D. DRR Loss 

The DRR measures the energy ratio of sound arriving 

directly from a source to that arriving after one or more 

reflections from surfaces [20]. To compute the DRR, the direct 

impulse is first identified, and then the direct sound (DS) 

component is calculated by measuring the sound energy within 

5 milliseconds (ms) around the direct impulse [21].  

ℒ𝐷𝑅𝑅(𝐩, 𝐩) = ∑|𝐩𝑫𝑹𝑹 − 𝐩𝑫𝑹𝑹|

4

𝑐=1

                                              (6) 

E. EDT Loss 

EDT is determined by fitting a straight line to the initial 10 

dB of sound decay, indicating changes in perceived 

reverberance [22]. To predict reverberance ratings accurately, 

the average EDT is calculated across frequency bands from 125 

Hz to 2 kHz [23], in accordance with ISO 3382-1:2009 standard. 

ℒ𝐸𝐷𝑇(𝐩, 𝐩) = ∑|𝐩𝑬𝑫𝑻 − 𝐩𝑬𝑫𝑻|

4

𝑐=1

                                               (7) 

F. Total Loss Function 

The total loss function for the FOA RIR generation integrates 

several distinct loss components to achieve the most accurate 

results. The weights assigned to the CGAN loss, MRSTFT, 

RT30, EDT, DRR losses are controlled by parameters 𝜆𝐴𝐷𝑉, 

𝜆𝑀𝑅𝑆𝑇𝐹𝑇 , 𝜆𝑅𝑇 , 𝜆𝐷𝑅𝑅  and 𝜆𝐸𝐷𝑇 , respectively. A weight of 0 

excludes a loss function from the total loss, while non-zero 

weights determine the influence of each loss function.  

To enhance the accuracy of RIR generation, additional 

auxiliary losses, such as acoustic parameters, are incorporated 

alongside primary loss MRSTFT. This paper investigates the 

use of adaptive weightings, as opposed to fixed weightings 

commonly used in prior work [11], which are set as 

hyperparameters and remain unchanged throughout training. 

Fixed weightings can be inadequate for managing multiple loss 

functions, often requiring numerous training processes to find 

the optimal values. In the absence of adaptive adjustments, 

there can be imbalances where auxiliary losses either dominate 

or fail to contribute effectively. To address this, adaptive 

weightings are employed based on the MetaBalance method 

[24]. This approach adjusts the gradient magnitudes of 

auxiliary losses (RT30, EDT and DRR losses) to better align 

with the target loss (MRSTFT loss), ensuring a balanced 

optimization process by maintaining comparable magnitudes 

for all losses involved. 

ℒG = 𝜆𝐴𝐷𝑉ℒ𝐴𝐷𝑉 + 𝜆𝑀𝑆𝐸ℒ𝑀𝑆𝐸 + 𝜆𝑀𝑅𝑆𝑇𝐹𝑇ℒ𝑀𝑅𝑆𝑇𝐹𝑇  

+𝜆𝑅𝑇ℒ𝑅𝑇 + 𝜆𝐷𝑅𝑅ℒ𝐷𝑅𝑅 + 𝜆𝐸𝐷𝑇ℒ𝐸𝐷𝑇                                          (8) 

ℒ𝐷 = 𝔼 [(𝐷(𝐩) − 1)2 + (𝐷(𝐩))
2

]                                            (9) 

III. EXPERIMENTS 

The proposed model is trained via a GeForce RTX 3080Ti 

GPU over 600 epochs on the dataset demonstrated below. The 

optimizer is RMSprop, and the learning rate is 2 × 10−4. 

A. Datasets  

The realistic FOA RIR dataset is recorded by using B-format 

microphones in a room of the Institute of Electronic Music and 

Acoustics in Graz, Austria [25]. The FOA RIR is carried out in 

a 10.5 m × 12 m × 5 m studio in ACN order before being 

normalized. The number of FOA RIRs is 720, while the whole 

dataset is split into training and testing datasets, with their 

percentages being 90% and 10%, respectively. Similar to [11], 

the real-world recorded FOA RIRs are resampled to 16 kHz, 

and 9600 samples is the length, i.e. 0.6 s. In the experiments, 

the recorded FOA RIR length is truncated to 8192 samples, 

corresponding to 0.512 s. The FOA RIRs are normalized by the 

maximum absolute value among the four channels to maintain 

the relationships within the channels.  

B. Implementations Evaluated  

Eight experiments are conducted to assess the performance 

of the proposed network with various loss combinations. Each 

experiment builds upon the base CGAN loss described in 

equation (1). The additional combinations tested include: 

CGAN loss combined with MRSTFT loss in (4); CGAN loss 

combined with MRSTFT and RT30 losses in (5), DRR losses 

in (6), EDT losses in (7); and CGAN loss combined with 

MRSTFT loss and various combinations of RT30, DRR and 

EDT losses in (8). 

C. Objective Evaluation 

The objective metrics are used to evaluate performance by 

several key measures: MSE over different lengths, MRSTFT, 

RT30, DRR, EDT, DOA, and DROQM. These metrics assess 

the impact of various loss functions on the generated FOA RIRs. 

Errors for MRSTFT, RT30, EDT, and DRR are calculated 

consistently with their corresponding loss functions, ensuring 

uniformity in evaluation. The MSE metric is computed over 

various lengths, including the entire signal, 5 ms and 50 ms for 

DS length. DROQM predicts the impact on LQ (0 to 1, where 

higher is better, with over 0.4 acceptable) of the DS part of FOA 

RIRs [14]. The errors presented in Table 1 are the average 

absolute errors between the real-world recorded FOA RIRs and 

the generated FOA RIRs averaged across all four channels for 

each pair of receiver and source positions in the testing dataset.  

The DOA information is extracted from FOA RIR. The four 

channels W, X, Y and Z are derived from a B-format 

microphone positioned at a specific azimuth angle and 

elevation angle. The omnidirectional channel W represents the 

impulse response of the audio, while the three orthogonal 

directional components X, Y, and Z channels capture 

directional cues. After converting the signal to the time 

frequency domain using the STFT, the azimuthal DOA is 

estimated for each time-frequency, where 𝑛  is the frame 

number and 𝑘 is the frequency index, as [15], 

𝑝𝑤(𝑛, 𝑘) =
𝑊(𝑛, 𝑘) × 𝑐𝑜𝑛𝑗(𝑊(𝑛, 𝑘))

∑ 𝑊(𝑛, 𝑘) × 𝑐𝑜𝑛𝑗(𝑊(𝑛, 𝑘))𝑁,𝐾
𝑛,𝑘

                        (10) 
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Table 1. The evaluation of generated RIR by different loss functions in CUBE dataset. 

Loss function implementation 
MSE↓ 
(DS, 

5 ms, /) 

MSE↓ 
(DS, 

50 ms, /) 

MRSTFT↓ 
(dB) 

RT↓ 
(s) 

EDT↓ 
(s) 

DRR↓ 
(dB) 

DOA↓ 
Azimuth 

(DS, radian) 

DOA↓ 
Elevation 

(DS, radian) 

DROQM↑ 
(DS, LQ, /) 

MRSTFT 0.04 0.01 3.14 0.20 0.19 2.64 0.82 0.42 0.44 

MRSTFT, RT30 0.03 0.02 3.44 0.16 0.12 2.75 0.80 0.48 0.45 

MRSTFT, EDT 0.02 0.01 3.30 0.21 0.14 2.28 0.69 0.36 0.43 

MRSTFT, DRR 0.04 0.01 3.32 0.23 0.19 2.20 0.84 0.45 0.42 

MRSTFT, RT30, EDT 0.04 0.02 3.67 0.24 0.25 2.29 0.81 0.53 0.46 

MRSTFT, RT30, DRR 0.03 0.01 3.10 0.16 0.16 2.61 0.78 0.47 0.46 

MRSTFT, EDT, DRR 0.04 0.01 3.21 0.18 0.11 2.43 0.89 0.41 0.41 

MRSTFT, RT30, EDT, DRR 0.05 0.02 3.42 0.15 0.10 1.96 0.78 0.43 0.41 

* The bold and underlined text indicates the lowest error in Table 1. The “/” means no unit. 

 

Fig. 1. Mean value of MAE with 95% confidence interval (shaded area) for the model using MRSTFT as the main loss 

function, combined with various acoustic parameters as auxiliary loss functions across time. (a) - (c) for W channel, (d) - 

(f) for Y channel, (g) - (i) for Z channel, (j) - (l) for X channel 
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𝐼𝐶=𝑋,𝑌,𝑍(𝑛, 𝑘) = 𝑅𝑒(𝑐𝑜𝑛𝑗(𝑊(𝑛, 𝑘)) × 𝐶(𝑛, 𝑘))                  (11) 

𝐼𝑎𝑧𝑖(𝑛, 𝑘) =
𝐼𝐶=𝑌(𝑛, 𝑘)

𝐼𝐶=𝑋(𝑛, 𝑘)
                                                             (12) 

𝐼𝑒𝑙𝑒(𝑛, 𝑘) =
−𝐼𝐶=𝑍(𝑛, 𝑘)

√(𝐼𝐶=𝑋(𝑛, 𝑘))
2

+ (𝐼𝐶=𝑌(𝑛, 𝑘))
2

                     (13) 

𝐷𝑂𝐴𝑎𝑧𝑖 = ∑ 𝑝𝑤(𝑛, 𝑘) ×

𝑁,𝐾

𝑛,𝑘

𝑅𝑒(tan−1(𝐼𝑎𝑧𝑖(𝑛, 𝑘)))               (14) 

𝐷𝑂𝐴𝑒𝑙𝑒 = ∑ 𝑝𝑤(𝑛, 𝑘) ×

𝑁,𝐾

𝑛,𝑘

𝑅𝑒(tan−1(𝐼𝑒𝑙𝑒(𝑛, 𝑘)))               (15) 

where, 𝑝𝑤(𝑛, 𝑘) is the power weightings, while 𝐼𝑎𝑧𝑖(𝑛, 𝑘) 

and 𝐼𝑒𝑙𝑒(𝑛, 𝑘) are the azimuth ad elevation power intensity of 

each time-frequency instant, respectively. The 𝑊(𝑛, 𝑘) , 

𝐶(𝑛, 𝑘), where 𝐶 = 𝑋, 𝑌, 𝑍 are the time-frequency instant in 

the four channels. The 𝑐𝑜𝑛𝑗  represents conjunct, while 𝑅𝑒 

demonstrates real part. The final DOA estimation is based on a 

weighted average of the values in Eq. (10), where the weights 

are based on the magnitude of the corresponding time-

frequency component in the W channel (this reduces the impact 

on the DOA estimation of low magnitude components not 

corresponding to direct sound [15]). The segmental length of 

direct sound in time domain is 5 ms referenced by [21]. 

IV. RESULTS 

When comparing the MSE for different lengths of DS 

segments in Table 1, it is clear that the model incorporating 

MRSTFT and EDT losses achieves the lowest MSE for both 5 

ms and 50 ms segment lengths. This model also records the 

lowest DOA azimuth and elevation errors, as DOA and MSE 

metrics evaluate the same DS section (5 ms). Furthermore, the 

model with MRSTFT, RT30, EDT, and DRR losses achieves 

the minimum errors in RT, EDT, and DRR measurements. The 

objective results in Table 1 also reveal that the model with 

MRSTFT and RT30 losses achieves the second-lowest RT30 

errors, while the model combining MRSTFT and DRR losses 

achieves the second-lowest DRR error. Although the model 

with MRSTFT and EDT does not reach the lowest EDT error, 

the model combined MRSTFT, RT, EDT, and DRR losses does. 

Additionally, the model with MRSTFT, RT30, and DRR losses 

achieves the lowest MRSTFT error. The DROQM scores for all 

models exceed 0.4, indicating that the quality is acceptable. 

Fig. 1 illustrates the mean value of MAE with 95% 

confidence intervals for the model using MRSTFT as main loss 

function, with various combinations of acoustic parameters as 

auxiliary loss functions over time for each channel. Comparing 

Fig. 1(a), 1(d), 1(g), and 1(j), the model combining MRSTFT, 

RT30, EDT, and DRR losses (represented by the magenta line) 

performs relatively stable to the model using only the MRSTFT 

loss (blue line). In Fig. 1(b), 1(e), 1(h), and 1(k), the model that 

combines MRSTFT and EDT losses (green line) consistently 

performs well compared to models that combine MRSTFT with 

only one other acoustic parameter. This model achieves the 

lowest mean value of MSE from 0 to 0.05 seconds, covering 

the DS and some early reflections, outperforming all other 

models in this time frame. This corresponds to the lowest MSE 

across different segment lengths and DOA errors. Additionally, 

when considering the MRSTFT loss combined with two 

acoustic parameter losses, the model with MRSTFT, EDT, and 

DRR losses (magenta line) shows greater stability with fewer 

errors throughout the entire signal duration, as shown in Fig. 

1(c), 1(f), 1(i), and 1(l). This stability is more observable 

compared to the combination of MRSTFT, RT30, and EDT 

losses (blue line), as well as the combination of MRSTFT, 

RT30, and DRR losses (black line).  

V. DISCUSSION 

Different acoustic parameters contribute to improvements in 

various aspects of the performance of models. Generally, loss 

combinations that include the acoustic parameter EDT 

consistently result in lower errors compared to those 

incorporating RT30 and DRR. When specific evaluations aim 

to achieve the lowest error values, selecting the corresponding 

acoustic parameter can reach the goal. A significant challenge 

in training a network with FOA RIR data is managing multiple 

channels to maintain the directional relationships among B-

format channels. The experiments demonstrate that focusing on 

generation accuracy for each channel enhances the overall 

accuracy of generated FOA RIRs. 

VI. CONCLUSIONS AND FUTURE WORK 

In this work, a novel CGAN-based network is proposed to 

generate FOA RIRs for specified receiver and source positions, 

as well as room dimension. The network employs a generator 

loss that includes adaptive weightings of various combinations 

of acoustic parameter loss functions, in addition to the CGAN 

loss. Objective results show that this network facilitates the 

generation of FOA RIRs with controlled MRSTFT and acoustic 

parameters through adaptive weightings. Specific acoustic 

parameters are utilized to manage the corresponding 

characteristics of the generated FOA RIRs. The models 

incorporating MRSTFT and EDT, as well as those combining 

MRSTFT, RT30, EDT, and DRR, outperform other loss 

combinations. The EDT acoustic parameter demonstrates better 

stability and fewer errors compared to models using alternative 

acoustic parameter losses. Future work will investigate 

alternative loss functions to further improve FOA RIR 

generation and explore extending this approach to produce 

higher-order Ambisonics using neural networks. 
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