
Audio Similarity Detection
Siddharth Harsh Y. Malhotra

CSE Department, Institute of Technology
Nirma University

Ahmedabad, India
23mce021@nirmauni.ac.in

Sapan H. Mankad
CSE Department, Institute of Technology

Nirma University
Ahmedabad, India

sapanmankad@nirmauni.ac.in

Abstract—Audio similarity detection plays a crucial role in
various applications, such as music recommendations, speaker
recognition, copyright infringement detection, and content-based
retrieval. Various categories of similarity types such as Audio
signal similarity, audio content similarity, audio perceptual sim-
ilarity, speaker voice similarity, and audio caption similarity
are covered by the researchers to identify similarity in audio
signals. We have performed various experiments to investigate
the appropriate audio embeddings for this task and to identify
which feature and distance metrics are more appropriate for
identifying speaker and content similarity. Various short-term
spectral features have been extracted from the audio signal for
feature extraction tasks which are then used for calculating a
similarity matrix using Euclidean similarity and Cosine similar-
ity. The performance of the fused features is better than the
standalone features. Also, with the use of pre-trained features
which are extracted from YAMNet, the model’s performance has
been improved.

Index Terms—Audio Similarity, Speaker-speaker similarity,
Euclidean Distance, Cosine similarity

I. INTRODUCTION

Audio similarity detection is the process of identifying and
quantifying the similarities between two or more audio signals.
It can be applied in a variety of fields, including voice casting,
speaker recognition, audio categorization, audio information
retrieval, and audio captioning. Various characteristics of the
audio signals, such as the signal waveform, the content or
meaning, the perceptual quality, the speaker identity, or the
caption text, can be used to determine audio similarity. Audio
similarity can be measured and assessed using a variety of
techniques and metrics, depending on the purpose and the data
at hand.

Finding reliable and significant features that capture relevant
aspects of similarity in audio signals is one of the challenges
in audio similarity detection.

Algorithms that utilise deep learning have been proposed
to automatically learn audio properties from data in order
to get over such limitations. Multiple layers of nonlinear
transformations make up deep learning models, which are able
to develop intricate and sophisticated representations of the
audio signals. These representations can serve as compact,
fixed-length vectors called embeddings, which condense the
properties of the audio signals. Simple metrics of similarity or
distance, like contrastive loss, cosine similarity, or Euclidean
distance, can be used to compare embeddings. Without using

Fig. 1. Audio Similarity Model

intermediary embeddings, deep learning models can also be
trained end-to-end to directly optimise the similarity metric.

Since the similarity of audio can be based on a lot of features
such as speakers’ voice, similar content, similar audio signals,
perceptual similarity, similar melody, rhythm, beats in case
of music, a lot of features extraction methods and features
have been proposed by the researchers. The main objective of
this study is to find which features are more suited to find
which type of similarity in audio signals. In this study, we
have experimented to find which features and distance metrics
for calculating similarity are suited to find audio speaker and
audio content similarity.

II. RELATED WORKS

Purwins et al. [1] provide an overview of the various deep
learning methods for audio signal processing, considering the
current explosion in deep learning research and development.
The domains of speech, music, and environmental sound
processing are compared side by side to identify similarities
and distinctions, as well as to highlight common approaches,
issues, important sources, and opportunities. A review is
conducted on the popular feature representations used in-
cluding log-mel spectra and raw waveform, as well as other
deep learning methods, such as convolutional neural networks
(CNNs), long short-term memory (LSTM) architecture vari-
ants, and more audio-specific neural network models. Along
with that, well-known deep learning application domains using
audio similarity are discussed including audio recognition (au-
tonomous speech recognition, music information retrieval, am-
bient sound detection, localization, and tracking) and synthesis
and transformation (source separation, audio improvement,
generative analysis). The review discussed various methods



for appropriate feature representation including mel frequency
cepstral coefficients (MFCC), log-mel spectrum and spec-
tograms along with their advantages. Various models such
as CNNs, Recurrent Neural Networks (RNNs), Sequence-
to-Sequence Models and Generative Adversarial Networks
(GANs) are discussed along with appropriate loss functions
to be used with them and phase modeling for the audio signal
similarity detection.

Peng et al. in [2] suggest a novel method for ranking
audio clips similarity using graph modelling and matching.
A new approach, Segment-based similarity is suggested as a
substitute for frame-based or salient-based criteria in assessing
the acoustical similarity of audio clips. This approach uses
segment-based representation, then it uses a similarity measure
and ranking system based on four different types of similarity
characteristics. Segments retain and display the temporal order
and change relationship between audio components in addition
to capturing the changing properties of the audio clip in
segment-based representation. There are four types of simi-
larity factors shared which are acoustical, granularity,temporal
order and interference which are measured by optimal match-
ing and dynamic programming progressively and jointly. A
bipartite graph computed by Optimal matching method has
been extended and used for similarity of audio with dynamic
programming. After calculation of interference factor, Audio
clip similarity is measured jointly by the degree of acoustical
and granularity similarity, the temporal order of matching, and
interference factor.

P. Manocha et al. [3] introduce the Contrastive Deep Percep-
tual Audio Metric (CDPAM), a revolutionary deep learning-
based approach to voice processing techniques. This method
improves generalisation to a wider range of audio disturbances
by gathering human opinions on triplet comparisons. It has
been demonstrated that CDPAM correlates well with human
reactions in nine different datasets. The study also shows
that, as evaluated by both objective and subjective testing,
the addition of this metric to current speech synthesis and
augmentation techniques results in a notable improvement.
The CDPAM method uses limited human-labeled data to sup-
plement it with multi-dimensional, self-supervised learning.
The training architecture shared in the paper is as follows. First
an audio encoder is trained using contrastive learning, then
trained the loss-net on JND data. Finally, the loss-net is fine
tuned on the newly collected dataset of triplet comparisons.

K. Seyerlehner et al. in [4] present a novel multi-level
vector quantization (ML-VQ) approach for modelling audio
content based on local spectral properties in this research.
The proposed method, ML-VQ method has multiple benefits
and performs similarly to the most advanced frame-level audio
similarity techniques. By implying a normed vector space, the
suggested histogram intersection distance makes it possible to
use more potent search techniques and to enable content-based
music retrieval for even bigger music archives. This paper also
indicates that the generated acoustic similarity space does not
suffer from the hub problem that affects Gaussian Mixture
Models of songs.

P. Avgoustinakis et al. in [5] propose a unique method for
audio-based near-duplicate video retrieval called Audio Simi-
larity Learning (AuSiL) in this paper. By extracting represen-
tative audio-based video descriptors by transfer learning from
a CNN trained on a large dataset of audio events, the method
identifies temporal patterns of audio similarity between video
pairings. This CNN network extracts the temporal structures
in its content is fed the similarity matrix that is created by
comparing these descriptors pairwise. After generating triplets,
the network is trained by optimising the triplet loss function.
Its model is as follows. Each video’s spectrogram is fed into
the feature extraction procedure, which pulls out the feature
vectors for every audio clip. Next, the dot product between the
feature vectors of the two videos is used to create a similarity
matrix. To capture the temporal patterns of the segment-level
within-video similarities, the resulting matrix is sent to Audio
Similarity CNN. Chamfer Similarity is used to aggregate the
final similarity score.

X. Yu et al. [6] present an innovative method for measuring
audio similarity based on Renyi’s quadratic entropy in the pa-
per. Since, noise interference occurs during audio processing,
standard distance metrics are not reliable for determining audio
similarity. To represent each audio in their method, MFCCs are
extracted. Subsequently, the probability density function (pdf)
of MFCCs is computed using the entropy of audio samples,
which can be approximated using the Parzen window. The
main process in this paper’s application of Renyi’s Quadratic
Entropy include feature extraction, similarity measure and
smoothening parameter. Their results show that the proposed
algorithm exceeds the Euclidean distance in accuracy.

Q. Wu et al. in [7] explore the retrieval of perceptually
similar audio, focusing on finding sounds according to hu-
man perceptions which investigates the retrieval of perceptu-
ally comparable audio. Comparatively speaking, this method
is more ”human-centered” than earlier audio retrievals that
sought to identify similar sounds. The authors measure percep-
tual similarity by utilising a wide range of auditory features.
Their results show that Line Spectral Pairs (LSP), MFCC,
and Perceptual Linear Prediction (PLP) are the three most
effective acoustic features. Moreover, the optimal combination
of features can improve the accuracy of similarity classification
compared with the best performance of a single acoustic
feature.

M. K. Singh et al. in [8] used the MFCC feature extraction
approach and the Euclidean distance to measure the similarity
between speakers in this study. This approach is used in
forensic statistics for voice similarity measurement. Euclidean
distance is used to quantify the speaker voice similarity
between two distinct sets of speakers: same speakers and
dissimilar speakers. The voice of the speaker has a significant
impact on the speech feature coefficient. When calculating
speaker similarity, Euclidean distance is derived from the
MFCC mean. The similarity index between same speakers
and dissimilar speakers is found using the Euclidean distance
difference. Their results show that the Euclidean distance is
minimum for the same speakers who speak the same text



or message and maximum when different speakers speak the
same text or message.

A. Gresse et al. [9] discussed a novel approach to voice
casting, a process in dubbing where the original voice in a
source language is replaced by a new one in a target language.
The authors have proposed a Siamese Neural Networks-based
approach to model a voice similarity metric that captures
all voice characteristics, including the observers’ receptive
interests. The paper hypothesizes that pairwise relationships
between different voices can be used to learn a similarity
metric for professional acted voices. The experimental re-
sults show that Siamese Neural Networks can model this
abstract notion of similarity and provide better generalization
results on unseen voices compared to classic architectures. The
learnt metric can discriminate target and non-target pairs on
new speakers/characters, highlighting the abstract information
sought.

J. H. Jensen et al. in [10] covered a technique for utilising
an anchor space to calculate similarity in this paper. Spectral
clustering is used in this method to classify audio recordings
into semantic groups based on shared low-level properties.
Using the data corpus, the spectral clustering method first cre-
ates an affine matrix that compares the similarity of each pair
of data points, in this example, one-second audio segments.
After extracting the eigenvectors, the original data is mapped
into a low-dimensional space that is simple to cluster using
a Singular Value Decomposition (SVD). The authors suggest
a simplification technique in which the mean vector of each
audio document’s feature vectors is used to represent it in
order to lessen this. After that, the collection of mean vectors
calculated for the complete data set is subjected to spectral
clustering, and the resulting clusters are chosen to serve as
anchors. The study also covers an estimating method based
on the eigen-gap that spectral clustering suggests for figuring
out how many clusters need to build.

J. H. Jensen [11] presented a MIDI-based test framework
for analysing music similarity measures in this paper. The
framework is used to investigate how sensitive a music sim-
ilarity measure is to transpositions and how dependent it is
on a song’s instrumentation as opposed to its melody. Three
software programmes are analysed for their music similarity
measures: Marsyas, MA toolbox, and Intelligent Sound Pro-
cessing toolbox. Although the investigated timbral similarity
measures are sensitive to transpositions and variations in
sound fonts, they demonstrate good performance in instrument
recognition. Sometimes the same melody played on differ-
ent instruments is not recognised by the beat/rhythm/melody
similarity metrics. According to the study, timbral similarity
metrics did not translate well to other sound typefaces. In cases
where certain smooth spectral adjustments, like changing the
bass and treble, do not significantly impact the impression of
timbre, it is hypothesised that timbral similarity measurements
that additionally rely on the temporal envelope will better
reflect human sound perception. The study also points out that
melody recognition still needs work. Only a genre categoriza-
tion experiment could not have produced the results that were

obtained. The influence of melody and instrumentation have
been successfully separated through the use of MIDI files, and
a signal change called transposition has been included. The
study makes the case that measuring how similarity metrics
are affected by pace, instrument combinations, bandwidth, and
audio compression. Various feature sets are tested for that in
this paper which included Timbre, MFCC, Beat, Pitch, Sone,
Spectrum histogram, Periodicity histogram, fluctuation pattern
and multivariate autoregressive model.

Z. Li and P. Song [12] proposed an algorithm for detect-
ing audio similarity based on a Siamese LSTM network is
proposed in this paper. The feature matching model and the
selection of audio signal features are the main technologies.
LSTM is used in the Siamese network’s fundamental network
segment as part of the approach. In order to compute audio
similarity, the method starts with the extraction of Filter banks
characteristics from two audio signals. In order to compare
the similarity of two samples, the Siamese LSTM network
model outputs their high-dimensional space representation.
The network is made up of two neural networks that share
weights and have the same structure. The FBank feature of
each audio segment is used as input, processed by LSTM, and
then coupled to a multi-layer complete connection, replacing
the base network of the Siamese neural network. In audio
similarity calculations based on deep learning, the paper
proves the usefulness of the FBank feature and claims that it
outperforms the MFCC feature. The Siamese LSTM network
and the FBank feature work together to precisely determine
how similar two audio portions are.

S. Bhosale [13] presented in this study a new measure in
order to assess Automatic Audio Captioning (AAC), a task
that requires summarising an audio sample in natural language
text. Acoustic semantics is needed for AAC in order to map
natural language text to analogous sounds, in contrast to other
natural language activities that use lexical semantic metrics
for evaluation. The authors include these acoustic semantics
into a unique metric that is based on Text-to-Audio Grounding
(TAG). They point out that although tasks involving natural
language, such as language translation and picture captioning,
are anticipated to yield outputs that are semantically com-
parable, AAC activities do not follow this pattern. As an
example, the terms ”clock” and ”car-turn indicator,” which
are semantically distant in the Word Embedding (WE) space,
may sound identical and appear interchangeably in an audio
caption. The research suggests a novel embedding space based
on TAG that can map words that produce comparable sounds
next to one another in order to fix this. The creation of an
acoustic embedding (s2v) that produces similar embeddings
for text corresponding to acoustically similar noises is the
primary contribution. This metric is composed of two modules:
one for Phrase Extraction (PE), which extracts phrases from
text; and another for TAG, which creates s2v embeddings for
each phrase. The trials show that the suggested evaluation
metric outperforms other metrics that are currently in use in
the research on AAC for natural language text and picture
captioning.



W. Wang et al. [14] presented a Neural-network-based
approach to measuring similarity between any two speaker em-
beddings that takes into account both past and future contexts
in this research. For similarity measurement, a segmental pool-
ing technique is suggested, which gives the embeddings more
context and hence better performance. To further improve
performance, the speaker embedding network’s parameters
are unfrozen and trained in conjunction with the similar-
ity measurement goal. This joint training approach provides
a generic framework for segment-level target-speaker voice
activity detection (TS-VAD) and similarity measuring. The
authors extended the system to TS-VAD and investigate the
impact of various pooling sizes. The findings demonstrate that
the MISS in the Diarization Error Rate (DER) is considerably
decreased by the TS-VAD approach.

III. PROPOSED APPROACH

In this work, we aim to investigate impact of different audio
embeddings in evaluating the speaker-speaker similarity and
content similarity. To evaluate our proposed approach, we use
a subset of ASVspoof 2017 v 2.0 dataset which includes only
genuine speech data.

In Fig. 2, a general architecture of the proposed system with
feature extraction module and similarity calculation module
is shown. First of all various short term spectral features
like MFCC, BFCC, CQCC etc. are extracted from audio wav
files. On these extracted features, similarity is calculated with
distance metrics- Euclidean distance and Cosine Similarity.
The top similar files are returned as output to the user. The
performance of these features is noted down.

In the next approach, the YAMNet model has been used
to extract deep features from audio wav files. On these ex-
tracted features, similarity is calculated with distance metrics-
Euclidean distance and Cosine Similarity. The top similar files
are returned as output to the user. The performance of these
deep features is compared with that of the previous approach.
If both the models performance is not satisfactory, then both
of the features can be combined and then used to calculate the
similarity of the audio wav files.

1) Extract features from each wav file and represent it in
form of 13- dimensional feature vector. We have used
around 9-10 feature representations including MFCC
etc. Total 3565 audio files are there.

2) Compute Euclidean distance between each feature vec-
tor. This gives a 3565x3565 distance matrix.

a) Further looking into and analysing this matrix
shows us some insights.

b) We found top 10 closest audio pairs for each
feature.

c) We also find which two speakers are the most
similar as per all the features.

d) Observing them showed that most of the features
focus on speaker similarity rather than content
similarity.

3) We repeat the same experiment with Cosine similarity
based approach.

A. Features

We use short-term spectral features to represent the input.
We use them as standalone first, and then we see the impact
of fused features for the underlying task.

Pre-trained features are extracted from wav files with the
help of the deep YAMNet model [15]. It is a pre-trained
deep learning learning model which is trained on AudioSet
corpus and can predict around 521 audio events. This model
is available on TensorFlow Hub and can give 3 outputs which
are class scores, embeddings and Log Mel Spectrograms.

B. Algorithm

Algorithm 1 Feature Extraction
1: Set file path
2: Require features not to be null
3: procedure FEATUREEXTRACTION
4: for each metric do
5: Take one feature
6: Generate feature matrix
7: Find top most similar files based on feature matrix
8: end for
9: end procedure

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Datasets used

To test the effectiveness of our proposed approach, we used
ASVSpoof 2017 version 2.0 dataset [16]. This dataset com-
prises bonafide and spoofed audio samples from ten differnt
speakers and phrased through repeated trials under various
recording, and playback conditions.

There are 10 common phrases which are spoken by 42
individual speakers. Since, we have details about content
spoken and speaker in the dataset, we can use that to identify
which features are able to identify similar content or similar
speaker voice.

We focus on examining speaker-speaker similarity and
speech-content similarity through these experiments.

B. Metrics used

To determine the distance between two input audio files, we
used Euclidean distance and Cosine similarity measure.

1) Euclidean Distance: The Euclidean distance between
two feature vectors u and v can be computed using the
following formula:

Euclidean Distance =

√√√√ n∑
i=1

(ui − vi)2

where:
• u = (u1, u2, . . . , un)
• v = (v1, v2, . . . , vn)
• n is the number of dimensions in the feature vectors.



TABLE I
LITERATURE SUMMARY TABLE

Author Year Title Key methodology used

Y. Peng et al 2006 Audio similarity measure by graph
modeling and matching

graph modeling and matching
segment-based similarity

J. H. Jensen et al. 2007 A framework for analysis of music
similarity measures

Mel frequency cepstral coefficient
Multiple signal classification

K. Seyerlehner et al 2008 Frame level audio similarity-a codebook
approach multi-level vector quantization approach

L. Lu and A. Hanjalic 2008 Unsupervised anchor space generation
for similarity measurement of general audio

Spectral clustering
anchor space

X. Yu et al. 2010 Audio similarity measure based on Renyi’s
quadratic entropy

Renyi’s Quadratic Entropy
Mel Frequency Cepstral Coefficients

Q. Wu et al 2012 Perceptual similarity between audio clips
and feature selection for its measurement

acoustic features
perceptual similarity

M. K. Singh et al. 2019
Speaker’s Voice Characteristics and
Similarity Measurement using Euclidean
Distances

Mel-frequency cepstral coefficient
Euclidean distance

A. Gress et al. 2019 Similarity Metric Based on Siamese
Neural Networks for Voice Casting Siamese Neural Networks

H. Purwins et al. 2019 Deep Learning for Audio Signal
Processing

Deep learning
Computational modeling

P. Manocha et al. 2021 CDPAM: Contrastive Learning for
Perceptual Audio Similarity Contrastive Deep Perceptual Audio Metric

P. Avgoustinakis et al. 2021 Audio-based Near-Duplicate Video Retrieval
with Audio Similarity Learning

Convolutional neural networks
spectrogram

Z. Li et al. 2021 Audio similarity detection algorithm
based on Siamese LSTM network Siamese LSTM network

W. Wang et al 2022
Similarity Measurement of Segment-
Level Speaker Embeddings
in Speaker Diarization

neural-network-based similarity
segmental pooling strategy

S. Bhosale et al 2023 A Novel Metric For Evaluating Audio
Caption Similarity

Text-to-Audio Grounding
s2v embeddings

Fig. 2. Architecture of audio similarity detection system

2) Cosine Similarity: The cosine similarity between two
feature vectors A and B is calculated using the following
formula:

Cosine Similarity =
A ·B

∥A∥∥B∥

Here:
• A ·B is the dot product of the vectors A and B.
• ∥A∥ is the magnitude (or norm) of vector A.
• ∥B∥ is the magnitude (or norm) of vector B.
The dot product A ·B is given by:

A ·B =

n∑
i=1

AiBi

The magnitude of a vector A is given by:

∥A∥ =

√√√√ n∑
i=1

A2
i

Similarly, the magnitude of vector B is:



∥B∥ =

√√√√ n∑
i=1

B2
i

Putting it all together, the formula for cosine similarity is:

Cosine Similarity =

∑n
i=1 AiBi√∑n

i=1 A
2
i

√∑n
i=1 B

2
i

This formula measures the cosine of the angle between
two vectors in a multi-dimensional space, which indicates
how similar the two vectors are. The value ranges from -1
(exactly opposite) to 1 (exactly the same), with 0 indicating
orthogonality or no similarity.

C. Discussion

After getting top similar files for each file with previously
mentioned distance metrics, the following observations were
noted:

• When using Euclidean distance as distance metric, with
all of the feature extraction techniques it was able to
identify same speaker but not content/common phrases
spoken.

• When using cosine similarity as distance metric, it was
able to identify similar content in some of the wav
files with features extraction techniques- MFCC, CQCC,
MSRCC and NGCC.

• With CQCC feature extraction technique, it was able to
identify same content in top similar files.

• For both distance metrics and all feature extraction tech-
niques, it was able to find the same speakers in top most
similar files.
With the use of YAMNet deep features, the model is able
to find more audio wav files with the similar speakers.

V. CONCLUSION AND FUTURE WORK

The field of audio similarity detection is broad and diverse,
and a lot of cutting-edge techniques are being created. These
techniques, which have many uses, including as speaker iden-
tification and music retrieval, are always developing in tandem
with advances in computational techniques and technology.

In this project, a study was done specifically to measure how
effective these features are in identifying similar speaker voice
and content similarity. It was concluded that with the distance
metrics of Euclidean distance and Cosine similarity, these
features identified similar speaker voice, but could not identify
content similarity significantly. It was also concluded that deep
learning models are more effective in capturing similarity
as when also including features extracted from YAMNet to
current model, performance improved in comparison to using
short term spectral features.
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