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Abstract—This study explored the appropriate auxiliary in-
formation for target speaker extraction (TSE). In TSE, the
conventional method involves using pre-recorded speech as an
auxiliary signal. However, in multi-channel environments where
spatial information is available, alternative approaches that utilize
a rough pre-extraction of the target speech as an auxiliary
signal are being explored. Pre-recorded speech is typically clean
but contains different content, whereas pre-extracted speech has
content aligned with the target but includes various types of
distortion depending on the extraction method used. These two
approaches differ in the characteristics of the auxiliary signals
and the conditioning methods applied. Previous research has
not thoroughly examined the relationship between the nature of
auxiliary signals and TSE model performance. This study aims to
explore the effective use of auxiliary signals in TSE models and to
provide a comprehensive analysis of their impact. Through TSE
experiments conducted in a multi-channel environment, we inves-
tigated the effects of auxiliary signals from three key perspectives:
the trade-off between content consistency and distortion, the level
of referencing, and the type of distortion.

I. INTRODUCTION

Speech separation has long served as a crucial front-end
component for speech applications like automatic speech
recognition (ASR) [1], [2]. Recently, efforts have focused on
isolating the target source from mixtures containing various
sources by incorporating auxiliary information about the target
source into separation networks. This approach, known as
target speaker extraction (TSE) [3], has seen significant ad-
vancements due to the adoption of neural networks. Alongside
improvements in network architecture, considerable research
has also been dedicated to enhancing the auxiliary information
used to identify the target speaker [4], [5].

In TSE, an enrollment utterance, which is a pre-recorded
sample of the target speaker’s voice, is typically used as
auxiliary information. The speaker embedding derived from
this enrollment utterance via a speaker encoder is employed
to condition the extraction network. Since the enrollment
utterance and the target speech in the mixture differ, the
speaker embedding is often transformed into a global feature,
such as by applying mean pooling across time frames.

On the other hand, in some scenarios, it is possible to
estimate the target speech without enrollment utterances,
for instance, by leveraging the spatial position of the tar-
get speaker. For example, if multi-channel microphones are
available and the direction of the target speaker is known,
blind source separation (BSS) [6] can be used to roughly
extract the target speech. In these situations, the pre-extracted

signal can be employed as auxiliary information in place of
enrollment utterances, which may be more advantageous for
target speech extraction (TSE) because both the speech content
and the recording environment are identical. However, this
approach introduces a trade-off between content consistency
and processing distortion, as the pre-extracted speech is likely
to include various distortions. The nature and extent of these
distortions, such as nonlinear artifacts and residual noise,
depend on the specific signal processing methods used [7],
[8].

In such scenarios, where the pre-extracted speech and the
target speech in the mixture share the same content, it is
possible to condition the model on a frame-by-frame basis,
rather than relying solely on global features as in tradi-
tional TSE systems. In speech separation, various methods
like Sequential Neural Beamforming [9] and Beam-guided
TasNet [10] have been developed to use pre-separated speech
to guide an additional separation network, thereby enhancing
performance. This approach has also been extended to TSE,
known as Beamformer-guided TSE [11], where the TSE net-
work utilizes the pre-extracted beamforming output as frame-
by-frame auxiliary information. However, as previously men-
tioned, the output from the pre-extraction stage often includes
distortions, and it remains uncertain whether frame-by-frame
conditioning is superior to systems employing global speaker
features. Although Beamformer-guided TSE has demonstrated
that frame-by-frame conditioning can surpass systems using
global speaker features, the influence of distortions in pre-
extracted speech on TSE has not been thoroughly investigated.

This raises several critical questions regarding the optimal
auxiliary signals for TSE, particularly concerning the trade-
offs between distortions and content alignment with the target
source, the nature of distortions in the auxiliary signals, and
the level at which these signals should be referenced:

• Question 1: When referencing signals at the statistical
level, which is more effective: undistorted but unaligned
enrollment utterances, or distorted but content-aligned
pre-extracted signals?

• Question 2: When referencing distorted but content-
aligned pre-extracted signals, which is more advanta-
geous: statistical-level conditioning or frame-level con-
ditioning?

• Question 3: When referencing distorted but content-
aligned pre-extracted signals, which type of distortion
is preferable: signals containing artifacts or those with



residual noise?

In this paper, we address these questions by exploring various
aspects of providing auxiliary information to TSE models.
Through experiments conducted in a multi-microphone envi-
ronment, we aim to elucidate how different types of auxiliary
signals and conditioning methods affect TSE performance. The
findings from this study are expected to contribute valuable
insights for the effective utilization of auxiliary information in
TSE.

The remainder of the paper is organized as follows. Section
II discusses the key technologies utilized in this study. Section
III presents the experiments on target speaker extraction and
summarizes insights related to the use of auxiliary signals.
Finally, Section IV concludes with a summary of the findings.

II. KEY TECHNOLOGIES

In this study, we address the three questions posed in the
introduction by conducting experiments that compare five TSE
models. These models utilize three types of auxiliary signals
and two conditioning methods. The auxiliary signals include
pre-recorded speech, which is commonly used in conventional
TSE, as well as pre-extracted speech obtained using Indepen-
dent Vector Analysis (IVA) [12] and Ideal Binary Masking
(IBM) [13] in a multi-channel environment. The conditioning
methods involve referencing the auxiliary signals either at the
statistical level or at the frame level. This section provides an
overview of the key technologies employed in our experiments.

A. Ideal Binary Masking (IBM)

IBM is a widely used technique for speech separation, where
an ideal binary mask is generated to isolate target signals
from interference. In this approach, each time-frequency bin is
classified as binary: bins where the target signal dominates the
interference are retained, while others are masked. Specifically,
the spectral amplitude of the target signal T(t, f) is compared
to that of the interference signal I(t, f), generating a mask
that assigns a value of one to bins dominated by the target
signal and zero otherwise. Applying this mask to the spec-
trogram of the mixture signal enhances the target signal while
suppressing interference. The time-domain target signal is then
reconstructed using the inverse Short-Time Fourier Transform
(ISTFT) [14].

In this study, we estimated IBM using a Deep Neural
Network (DNN) composed of convolutional layers and Long
Short-Term Memory (LSTM) [15] layers. Multichannel mix-
ture signals and corresponding clean target speech were used as
ground truth. The DNN inputs the spectrogram of the mixture
signal and outputs a binary mask that indicates whether each
time-frequency bin corresponds to the target speech. During
training, network parameters were optimized to minimize
the error between the estimated and ideal masks using the
binary cross-entropy loss function. Due to the non-linear nature
of IBM processing, the output audio from DNN estimation
contains artifacts.

Fig. 1. Model structure for statistics-level referencing of auxiliary informa-
tion. as can be either clean enrollment utterance or pre-extracted signal of
speaker s.

B. Independent Vector Analysis (IVA)

IVA is a sophisticated Blind Source Separation (BSS) tech-
nique that leverages the statistical independence of multi-
dimensional signals. Building upon Independent Component
Analysis (ICA) [16], IVA excels in separating multiple sources
captured by multiple microphones.

The core principle of IVA is based on a model where the
observed signal vector y(t) is a linear mixture of unknown,
independent source vectors x(t), indexed by time t. This
relationship is mathematically represented as:

y(t) = Ax(t), (1)

where A is the mixing matrix, with each column represent-
ing the propagation of signals from different sources to the
microphones. IVA estimates this mixing matrix A from the
observed signals, enabling the recovery of the original source
signals x(t).

In IVA, the number of separated output signals typically
matches the number of input channels. In this experiment,
we assumed that the direction of arrival (DOA) of the target
speaker was known in advance and used this information
to perform the separation. From the separated signals, we
identified the one corresponding to the target speaker by
calculating the steering vector based on the speaker’s DOA. We
then assessed the similarity by computing the average absolute
value of the inner product between the steering vectors of the
separated signals and that of the target speaker. The signal
with the highest similarity was selected as the target speech.
However, due to the separation process, the pre-extracted
speech obtained using IVA still contains residual noise.

C. Statistics-Level Referencing of Target Speaker Information

Although any existing TSE architectures could be employed
for this investigation, we selected the time-domain implemen-
tation of SpeakerBeam (TD-SpeakerBeam) [17]–[21] due to
its foundational role in many TSE models. Figure 1 provides
an overview of TD-SpeakerBeam. This architecture consists
of two networks: an auxiliary network [22] and an extraction
network. The auxiliary network is designed to extract the
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Fig. 2. Model structure of frame-level referencing of auxiliary information.

global speaker embedding of the target speaker from either the
enrollment utterance or the pre-extracted signal as. Meanwhile,
the extraction network processes the mixture y and uses
the speaker embedding to condition its internal features for
extracting the target speech.

The auxiliary network includes an encoder layer and a sin-
gle convolutional block to process the time-domain auxiliary
signal. The output from the convolutional block is averaged
over time frames to produce the global speaker embedding es.

The extraction network is configured similarly to Conv-
TasNet [23]. The time-domain mixture y is input into the
encoder layer, passes through several convolutional blocks, and
generates a mask in the latent space. An adaptation layer,
placed between the first and second convolutional blocks,
incorporates the speaker embedding vector es from the aux-
iliary network to guide the mask estimation through element-
wise multiplication. This approach ensures that only the target
speech is extracted by tailoring the mask estimation based on
the speaker embedding. The final mask, applied to the mixed
signal and processed through the decoder layer, yields the time-
domain extracted signal x̂s. Since this model uses the global
speaker embedding averaged over time frames as statistical
values, it exemplifies “referencing auxiliary information at the
statistical level.”

D. Frame-Level Referencing of Target Speaker Information

We investigate a framework in which the extraction network
refers to the auxiliary information of the target speaker on a
frame-by-frame basis, similar to the Beamformer-guided TSE
approach. In scenarios where it is feasible to isolate and extract
the target source from multi-channel observation signals, the
extraction network can use the pre-extracted target source
signal as auxiliary information. In this study, we employ IVA
and IBM for pre-extraction to obtain this auxiliary information.

Figure 2 illustrates the structure of this model. Initially,
signals recorded by multi-channel microphones are separated
into source signals using IVA or IBM, and the extracted
signal corresponding to the target source is referenced by the
extraction network. The core extraction network retains the
architecture of the SpeakerBeam. In the frame-level referenc-
ing approach, both the mixture and auxiliary signals are input

Fig. 3. Simulational acoustic field used in experiments.

into the encoder, and the outputs are concatenated along the
feature dimension. Despite containing distortions, the auxiliary
signals are aligned with the target source in the mixture. This
allows the model to utilize the pre-extracted signal on a frame-
by-frame basis, potentially leading to improved performance
compared to statistical-level referencing due to the richer
information available. However, when the pre-extracted signal
contains significant distortion, global speaker embedding might
offer greater stability. The trade-off between stability against
distortions and content alignment remains an area for further
investigation.

III. TARGET SPEAKER EXTRACTION EXPERIMENT

To address the key questions concerning the trade-off be-
tween content consistency and processing distortion (Q1),
the referencing level of auxiliary signals (Q2), and the type
of distortion in auxiliary signals (Q3), we conducted target
speaker extraction (TSE) experiments in a multi-channel input
setting.

To achieve this, we compared the following models:
1) A model that refers to undistorted pre-recorded speech

at the statistical level,
2) A model that refers to speech containing artifacts pre-

extracted by IBM at the statistical level,
3) A model that refers to speech containing residual noise

pre-extracted by IVA at the statistical level,
4) A model that refers to speech containing artifacts pre-

extracted by IBM at the frame level, and
5) A model that refers to speech containing residual noise

pre-extracted by IVA at the frame level.
Comparing Models 1, 2, and 3 addresses Question 1. To
investigate Question 2, we compare Models 2 and 4, as well
as Models 3 and 5. Finally, to explore Question 3, we compare
Models 2 and 3, as well as Models 4 and 5.

A. Experimental Setups

Figure 3 illustrates the experimental simulation environment.
The room dimensions are 7× 7× 3 meters. Two microphone
arrays, each with two channels, are arranged as shown in the
figure. The microphone arrays are spaced 40 cm apart, with
a 3 cm distance between microphones within each array. The
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TABLE I
RESULTS OF TARGET SPEAKER EXTRACTION EXPERIMENTS IN TWO-SPEAKER MIXED ENVIRONMENT.

System
Target Speaker Extraction Models Evaluation Results

Auxiliary Signal Referencing Level SISDR [dB] STOI [%]

Observation - - -0.5 70.3
IBM - - 7.3 86.5
IVA - - 7.8 88.4

TSE-1 Pre-recorded clean signal Statistics 12.1 90.6
TSE-2 Pre-extracted signal by IBM Statistics 12.6 91.3
TSE-3 Pre-extracted signal by IVA Statistics 12.4 91.1
TSE-4 Pre-extracted signal by IBM Frame-by-frame 15.2 94.5
TSE-5 Pre-extracted signal by IVA Frame-by-frame 18.0 96.3

target source is placed in front of the microphone arrays, while
the interfering sources are located one to two meters behind.
This setup simulates the recording of mixed speech from two
speakers [24]. The position of the target source remains fixed,
whereas the interfering sources are positioned at angles ranging
from 15◦ to 165◦ in 10◦ increments, allowing for interference
from various directions. The number of interfering sources
remains constant for each direction.

Both the target and interfering speeches are selected from
the LibriSpeech corpus [25], using speaker combinations con-
sistent with those in the Libri2Mix corpus [26]. The sampling
frequency is set to 8 kHz, and the reverberation time is
randomly chosen between 0.2 and 0.5 seconds. The dataset
comprises 27000 samples for training, 6000 samples for vali-
dation, and 6000 samples for evaluation.

The model is trained for 200 epochs with a batch size
of five, using the negative SI-SDR [27] as the loss function
to measure the difference between the ground truth and the
extracted speech. The Adam optimizer is employed with a
learning rate of 0.001, and no weight decay is applied. To
prevent convergence to local optima, the learning rate is halved
if there is no improvement in validation performance for 20
epochs. If performance does not improve after 120 epochs,
training is halted early.

B. Experimental Results

Table I presents the results from the target speaker extraction
experiments. Based on these results, insights are organized
to address the following three key questions: i) the trade-off
between content consistency and distortion, ii) the approach to
referencing auxiliary signals, and iii) the impact of different
types of distortion in auxiliary signals.

1) Q1: Trade-off between Content Consistency and Distor-
tion: We compared the use of undistorted pre-recorded speech
(TSE-1), which differs in content from the target source, with
pre-extracted speech containing distortions but aligned with
the speech content (TSE-2 and TSE-3), referencing them at
the statistical level. The results indicate that, in the trade-off
between content consistency and distortion, the latter has a
more favorable impact on model performance. This is likely
because, when conditioning at the statistical level, the time-
averaging process in the auxiliary network compresses the

signal, thereby mitigating the adverse effects of distortion in
the auxiliary signal.

2) Q2: Referecing Level of Auxiliary Singals: The results
from using TSE-2 through TSE-5 indicate that models condi-
tioned at the frame level outperform those conditioned at the
statistical level when referencing pre-extracted speech, whether
by IVA or IBM. This suggests that when the auxiliary signal
is aligned with the target speech, learning local features that
capture the temporal variations within the utterance is more
effective than aggregating information to learn global features.

3) Q3: Type of Distortion in Auxiliary Singals: In a multi-
channel environment, using IBM for source separation intro-
duces specific artifacts due to nonlinear processing, whereas
using IVA results in residual noise. The artifacts typically
manifest as artificial, harsh sounds caused by missing spectral
components of the target signal, while residual noise com-
prises leftover interference and environmental noise from the
recording setup.

When comparing TSE-2 with TSE-3 and TSE-4 with TSE-
5, it can be observed that at the statistical level, residual noise
has a more detrimental impact on performance than artifacts,
whereas at the frame level, artifacts are more problematic
than residual noise. This suggests that for statistical-level
conditioning, which captures global features of the auxiliary
signal, it is crucial to ensure that no extraneous elements are
present, leaving only the target speech. In contrast, for frame-
level conditioning, which captures local features, it is more
important that, even if extraneous elements are present, the
target speech remains intact and clear.

IV. CONCLUSION

This study examined the effects of various types of auxiliary
signals and conditioning methods on the performance of TSE
models in a multi-channel environment. Our experiments re-
vealed that pre-extracted signals with distortions, when aligned
with the target speech, enhance TSE performance more effec-
tively than undistorted but unaligned pre-recorded utterances.
Frame-level conditioning proved particularly advantageous, as
it captures local features and utilizes richer information com-
pared to statistical-level conditioning. Furthermore, the type of
distortion in the auxiliary signal was found to influence model
performance: residual noise has a more adverse impact than ar-
tifacts in statistical-level conditioning, while the reverse holds
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true for frame-level conditioning. These findings underscore
the importance of maintaining the purity of auxiliary signals
for global feature extraction and preserving the integrity of
target speech information for local feature extraction, offering
valuable insights for the design and optimization of TSE
systems.
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L. Burget, “Sequence summarizing neural network for
speaker adaptation,” in In Proc. ICASSP, 2016.

[23] Y. L. et al., “Conv-tasnet: Surpassing ideal time–
frequency magnitude masking for speech separation,”
IEEE/ACM transactions on audio, speech, and language
processing, vol. 27, no. 8, pp. 1256–1266, 2019.

[24] R. Scheibler, E. Bezzam, and I. Dokmanić, “Pyrooma-
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