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Abstract—Images often contain a wealth of information, but not
all the information in a picture is related to image classification,
and those modules that are not related to classification may be used
as interference during classification, affecting the classification
ability of the model. To solve this problem, we propose a class-
aware feature alignment adaptive module (CAFASA). The key
idea of CAFASA is first to combine patch embedding and
class-aware embedding and add a feature alignment module
on top of this foundation to help the model obtain better
classification performance. This method is significantly superior to
the existing state-of-the-art methods in CIFAR-FS, miniImageNet,
tieredImageNet, and FC-100.

I. INTRODUCTION

In most of the existing datasets, the representation of the
image is single, and only part of the image information is
included, for example, on the CIFRA[1] and miniImageNet[2]
datasets, only part of the content of the image is described.
Although annotations may be incomplete, this approach is
acceptable in some cases, such as when there are enough
tagged images per class, which vary significantly within the
class to cover different situations within the class, so that even
if the annotation focuses on only a portion of the image, the
model can learn a large amount of data to identify and classify
the pictures. However, in the case of small-shot classification,
the model needs to identify new classes that are different from
the training stage. Each class has only a minimal number
of labeled images, which makes it difficult for the model to
confirm which entities are the critical information to determine
the image, resulting in a decrease in the generalization ability
of the model.

A promising approach is VITs ability to capture complex
relationships between different regions within an image through
a self-attention mechanism, which is widely used in small-
shot classification, and ViTs excels in tasks such as image
detection and object classification[3]. ViTs typically require a
large amount of data to train due to the lack of convolutional
inductive bias found in CNNs. Some approaches use a single
Transformer head in combination with a CNN[4], [5] to enhance
the model’s performance in few-shot learning, and recently
feature[6] provides an effective solution that enables a fully
ViT-based architecture to be successfully generalized to small-
scale image datasets.

Another common approach is to align semantically relevant
regions[6]–[8] . For example, SAML[9] uses an activation-based
attention mechanism to highlight regions related to categories
and suppress others, thereby enhancing the model’s ability

Fig. 1. The localized region visualization of birds in the miniImageNet
dataset obtained using the method of this paper shows that the areas with
higher energy in the images represent the more discriminative parts.

to generalize new categories. CNA[10], i.e., cross-attention
network, the core idea of which is to enhance the model’s ability
to recognize category-related regions in the image through the
attention mechanism. DeepEMD[7] uses differentiable EMD
as a metric to calculate the structural distance between image
regions to determine the correlation of images. CXT uses
Transformer[8] to enhance further the expressive ability of
features through the self-attention mechanism so that the model
can capture the complex relationship between different regions
in the imageFeature method dynamically selects the most
informative region in the image. The weights of these regions
in the feature representation are readjusted to optimize category
recognition. While these techniques do a great job of reducing
noise and avoiding over-reliance on training data, they also face
challenges where the aligned regions may not be useful areas,
and secondly, because the small number of samples in the new
category means that the model may mistakenly focus on those
regions that are not relevant to the target class, affecting the
accuracy of the classification.

In this paper, we propose an innovative Category-Aware
Feature Alignment Adaptive Module (CAFASA) that makes
patch embedding class-related by integrating patch embedding
with class-aware embedding[11], after which we introduce a
feature alignment module, Reconstruct query set features with
support sets and query sets to further process and refine features.
As shown in Figure 1, based on the local area visualization
returned by our model in miniImageNet, it can be observed
that the feature alignment module enhances the model’s ability
to recognize category features. At the same time, to avoid the
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Fig. 2. illustrates the framework of the class-aware Feature fusion method. The Vision Transformer (ViT) is initially pre-trained using the Masked Image
Modeling (MIM) approach. Subsequently, a class-aware embedding module is introduced, which interacts and learns continuously with the image patch embeddings
within the ViT. At the model’s output end, these patch embeddings are adjusted in conjunction with the class-aware embeddings to ensure they are associated
with specific categories. Finally, we introduce a Feature fusion method that utilizes the reconstructed features for similarity measurement.

collapse of supervision, we use self-supervised pre-training
instead of traditional pre-training. Specifically, this approach
generates semantically meaningful patch embeddings through
Masked Image Modeling (MIM)[12] as an excuse task. We
introduce a category-independent embedding that is fed into
the Transformer model along with the patch. This embedding
retains the semantic information of the original feature and
enhances its category relevance.

Our main contributions are summarized as follows:

1) We take an innovative approach to deal with the prob-
lems caused by single-label annotations in the few-shot
learning environment.

2) By introducing category-aware embedding, CAFASA
can generate feature representations that are relevant
to categories. This enables the model to capture the
differences between categories more accurately when
performing classification, improving the accuracy and
reliability of classification.

3) The feature information of the support set is used to
enhance the query set, and the features of the query set
are made more prosperous and more complete through
feature alignment.

II. METHOD

In this section, we first define the small sample problem
and then describe in detail the process of class-aware patch
embedding adaptation and feature Feature fusion.

A. problem define

Few-shot image classification aims to apply the patterns
learned from the limited training effectively set Ctrain to the
test set Ctest, Ctrain ∩ Ctest = ∅. In this process, we follow
an N-way K-shot classification task. N represents the total
number of categories, K represents the number of labeled
images available in each category, and Q represents the number
of images used for testing in each category. Precisely, it consists
of two parts: the support set contains N categories, each with
K images Xs = (xi, yi)

NK
i=1 , which are used to train the model;

the query set also contains N categories, but each category has
only Q images, which are used to evaluate the generalization
ability of the model Xq = (xi, yi)

NQ
i=1 so that a model that can

learn from a small number of samples and generalize to new
categories can be trained so that accurate predictions can still
be made when facing new and unseen categories.

B. overview

As shown in Figure 2, We first divide the input image
into multiple small patches and map these patches into a
high-dimensional feature space through linear projection. To
preserve the spatial structure information of the picture, we add
position encoding to the feature representation of these patches.
In addition, we introduce a category-independent embedding
vector to enhance the model’s understanding of the overall
characteristics of the image. Based on this innovative process,
we also introduce a Feature fusion mechanism. Feature fusion
generates richer feature representations through the interaction
and relearning of internal features.
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C. Class-aware patch embedding adaptation

Self-supervised pre-training: In the few-shot image classi-
fication task, traditional supervised pre-training methods may
cause overfitting[6], resulting in the inability of training data
to generalize effectively to new categories. To address this
problem, we adopt an innovative self-supervised pre-training
method. Specifically, we divide the image into small patches,
randomly mask some areas, and use a Vision Transformer (ViT)
to encode these image patches to fuse the masked regions. This
method, called Masked Image Modeling (MIM)[12], [13], not
only generates semantically meaningful patch embedding[14]s
but also forces the model to understand the overall structure and
content of the image through the feature fusion task. Unlike self-
supervised methods that rely on specific training courses, MIM
aims to improve the model’s deep understanding of images,
thereby enhancing its generalization ability when facing new
categories. The advantage of this method is that it reduces the
dependence on limited labeled data while providing a more
robust feature.

Class patch embedding: After the previous pre-training,
a large number of patch embeddings can be obtained and
processed in the model’s feedforward process. However, these
embeddings may not be related to any specific category at first.
Still, by interacting with the class tokens in the model, they
can be adjusted to reflect the characteristics of a particular
category. That is, by interacting with the class token, the
patch embedding can be adjusted to have class awareness and
reflect the characteristics of a specific category. The pre-training
process generates patch embeddings for a large number of input
images, and the semantic content of these embeddings may not
be directly associated with a specific category. To improve the
category relevance of these embeddings, we propose a class-
aware embedding adjustment method. First, the class tokens
are category-agnostic before being input into ViT. Second, by
interacting with the patch embeddings in ViT, the class tokens
can gradually gain category awareness, and their final state can
reflect the category information of the image. Although we can
extract embeddings of many small blocks (i.e., patches) from
an image, these embeddings themselves may not carry valuable
information about the image category. Some methods directly
use the obtained patches as images to alleviate the problem of
the number of pictures, but the effect is not evident despite the
improvement[15], [16]. We start from a new perspective and
combine patch embeddings with class-aware embeddings:

z̄i = zi + λzclass (1)

Where z̄i represents the adaptive patch, zi represents the
i-th original patch extracted directly from the input data,
and zclass represents the information related to the category.
λ > 0 represents the class-aware factor of the correlation
size, which adjusts the correlation between adaptive and class-
aware embeddings. The larger the value of λ, the higher the
correlation between the adapted patch embedding and the class
of interest. This helps the model to utilize the information of
known categories better when dealing with unknown categories.

D. FFM

Support
images

Query image

Fig. 3. Feature fusion module

For a C-way, K-shot classification task, after the initial patch
input, we can obtain the support features of the Cth class,
denoted as Fs = [z̄si ] ∈ Rr×d, where d represents the number
of channels, and r is the feature spatial resolution, which is
the height of the image multiplied by its width. For each class
c, we aggregate all features from the k support images into
a single support image matrix, and the query features Fq =
[z̄qj ] ∈ Rkr×d, Attention score Sij is calculated as follows:

Sij =
(z̄qj )

T · z̄si√
D

· w (2)

where w is the learnable weight parameter.

Pij =
exp(Sij)∑r
i=1 exp(Sij)

(3)

The attention probability Pij is obtained by applying the
softmax function to the attention scores Sij , where the softmax
function converts the raw scores into a probability distribution.

ẑqj =

r∑
i=1

Pij z̄
s
i (4)

where i indicates the ith support set feature, and j indicates
the jth query set feature. The reconstructed query feature vector
Q̂i can be expressed as:

Q̂i =

ẑ
q
1
...
ẑqr

 (5)

For the ith feature of the query set, the similarity matrix M
between the reconstructed query set feature matrix Q̂i and the
original query set Qi can be represented as:

M = Q̂T
i Qi (6)

We can define a loss function to measure the difference
between Q̂i and Qi, such as the Mean Squared Error (MSE)
loss:
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TABLE I
TABLE 1: CLASSIFICATION ACCURACY OF SMALL SAMPLES SET BY THIS METHOD ON MINIIMAGENET, TIEREDIMAGENET, CIFAR-FS, FC100 FOR 5-WAY

1-SHOT AND 5-WAY 5-SHOT.

Model Backbone ≈ #Params
miniImageNet tieredImageNet CIFAR-FS FC100

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
SetFeat [17] SetFeat-12 12.3 M 68.32±0.62 82.71±0.46 73.63±0.88 87.59±0.57 - - - -
ProtoNet [18] ResNet-12 12.4 M 62.29±0.33 79.46±0.48 68.25±0.23 84.01±0.56 - - 41.54±0.76 57.08±0.76
FEAT [19] ResNet-12 12.4 M 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16 - - - -
DeepEMDT [7] ResNet-12 12.4 M 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58 - - - -
IEPT [20] ResNet-12 12.4 M 67.05±0.44 82.90±0.30 72.24±0.50 86.73±0.34 - - - -
MELR [21] ResNet-12 12.4 M 67.40±0.43 83.40±0.28 72.14±0.51 87.01±0.35 - - - -
FRN [22] ResNet-12 12.4 M 66.45±0.19 82.83±0.13 72.06±0.22 86.89±0.14 - - - -
CG [23] ResNet-12 12.4 M 67.02±0.20 82.32±0.14 71.66±0.23 85.50±0.15 73.00±0.70 85.80±0.50 - -
DMF [24] ResNet-12 12.4 M 67.76±0.46 82.71±0.31 71.89±0.52 85.96±0.35 - - - -
InfoPatch [25] ResNet-12 12.4 M 67.67±0.45 82.44±0.31 - - - - - -
BML [26] ResNet-12 12.4 M 67.04±0.63 83.63±0.29 68.99±0.50 85.49±0.34 73.45±0.47 88.04±0.33 - -
CNL [27] ResNet-12 12.4 M 67.96±0.98 83.36±0.51 73.42±0.95 87.72±0.75 - - - -
Meta-NVG [28] ResNet-12 12.4 M 67.14±0.80 83.82±0.51 74.58±0.88 86.73±0.61 74.63±0.91 74.63±0.91 46.40±0.81 61.33±0.71
PAL [29] ResNet-12 12.4 M 69.37±0.64 84.40±0.44 72.25±0.72 86.95±0.47 - - - -
COSOC [30] ResNet-12 12.4 M 69.28±0.49 85.16±0.42 73.57±0.43 87.57±0.10 - - - -
Meta DeepBDC [23] ResNet-12 12.4 M 67.34±0.43 84.46±0.28 72.34±0.49 87.31±0.32 - - - -
LEO [31] WRN-28-10 36.5 M 61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09 - - - -
CC+rot [32] WRN-28-10 36.5 M 62.93±0.45 79.87±0.33 70.53±0.51 84.98±0.36 73.62±0.31 86.05±0.22 - -
FEAT [19] WRN-28-10 36.5 M 65.10±0.20 81.11±0.14 70.41±0.23 84.38±0.16 - - - -
PSST [33] WRN-28-10 36.5 M 64.16±0.44 80.64±0.32 - - 77.02±0.38 88.45±0.35 - -
MetaQDA [34] WRN-28-10 36.5 M 67.83±0.64 84.28±0.69 74.33±0.65 89.56±0.79 75.83±0.88 88.79±0.75 - -
OM [35] WRN-28-10 36.5 M 66.78±0.30 85.29±0.41 71.54±0.29 87.79±0.46 - - - -
FewTURE [6] ViT-S/16 22 M 68.02±0.88 84.51±0.53 72.96±0.92 86.43±0.67 76.10±0.88 86.14±0.64 46.20±0.79 63.14±0.73
CPEA [11] ViT-S/16 22 M 71.97±0.65 87.06±0.38 76.93±0.70 90.12±0.45 77.82±0.66 88.98±0.45 47.24±0.58 65.02±0.60
Ours(CASAFA) ViT-S/16 22 M 73.19 + 0.63 88.23±0.36 77.11±0.72 90.39±0.41 78.46±0.68 89.95±0.44 47.19±0.58 66.36±0.57

LMSE =
1

Q

r∑
j=1

∥ẑqj − z̄qj ∥
2
2 (7)

III. EXPERIMENTS

In this section, we first explain the purpose of the experiment
and the results obtained, then conduct a comparative analysis
with other researchers in the field, and finally perform an abla-
tion experiment on the critical components of the experiment.

A. Experimental settings

Datasets. We tested our method on four widely recog-
nized few-shot learning benchmark datasets: miniImageNet[36],
tieredImageNet[31], CIFAR-FS[37], and FC100[38]. First, we
split the datasets into training, validation, and test sets according
to standard experimental practices. The class labels of these
datasets are non-overlapping. That is, the categories observed
in the training phase will not appear in the validation and test
phases. This approach ensures that the knowledge learned by
the model in the training phase can be effectively generalized
to unseen categories.

Backbone. In this paper, we use the ViT-S/16 model as the
core architecture of our research. This model was chosen based
on its parameter count, which is comparable to other commonly
used networks in small sample image classification. In this
configuration, we use a multi-layer perception (MLP) as the
projection head, which contains two hidden layers. In the first
hidden layer, we applied the GELU activation function, and after
the second hidden layer, we used LayerNorm for normalization.
We then introduced an innovative feature fusion strategy, using
the query vector and the critical vector to calculate the attention
score. We normalized it through the softmax function and

the scaling factor to obtain the attention probability. Through
the calculated attention probability, we perform a weighted
summation on the value vector to reconstruct the feature.
Through the fusion mechanism, we have improved the model’s
generalization ability for samples.

Experimental details. We adopted the strategy proposed in
the literature [12], strictly set parameters, pre-trained the ViT-
S/16 model, and used 4 A100 40G GPUs to pre-train ViT-S/16.
The total number of training times was 1600 and the batch
size was 512. During the training process, we only used the
trained part of the dataset to avoid overfitting the test data in
the pre-training stage. After that, we trained an inverse ResNet
as a decoder. The purpose of the decoder is to convert the
high-dimensional feature values learned by the model back to
the pixel space of the original image, with an output size of 3
× 84 × 84. At this stage, we used the Adam optimizer with an
initial learning rate of 0.01. We set the batch size to 200 and
the total number of training times to 1000.

Evaluation protocol. In both 5-way 1-shot and 5-way 5-shot
image classification tasks, we evaluate the final performance of
the model by randomly sampling 1000 samples from each test
category and calculating their average accuracy, where there
are 15 query images for each category.

B. Compariison result

Tables I show the performance comparison of different
methods on four different benchmark datasets, including
miniImageNet, tieredImageNet, CIFAR-FS, and FC100, using
two settings: 5-way 1-shot and 5-way 5-shot. The experimental
results show that our CAFASA method outperforms existing
methods.
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TABLE II
IMPACT OF PROJECTION HEAD ON SMALL SAMPLE CLASSIFICATION

Projection head miniImageNet tieredImageNet CIFAR-FS FC100
a b c 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

✓ 72.88±0.62 87.91±0.35 76.95±0.69 90.17±0.39 77.69±0.65 89.89±0.42 46.65±0.55 65.77±0.53
✓ ✓ 73.06±0.63 87.99±0.37 77.02±0.71 90.68±0.41 77.43±0.64 89.95±0.42 46.77±0.58 65.83±0.56

✓ ✓ 72.95±0.62 87.96±0.36 77.04±0.71 90.24±0.41 77.80±0.67 89.93±0.43 46.65±0.57 65.84±0.56
✓ ✓ ✓ 73.19±0.63 88.23±0.36 77.11±0.72 90.39±0.41 78.46±0.68 89.95±0.44 47.19±0.58 66.36±0.57

TABLE III
DIFFERENT INPUTS

miniImageNet tieredImageNet CIFAR-FS FC100

x 73.01±0.63 87.99±0.37 77.03±0.72 90.11±0.38 78.33±0.67 89.86±0.42 46.98±0.56 66.21±0.57

|x| 73.17±0.68 88.33±0.36 77.11±0.68 90.45±0.42 78.37±0.67 89.93±0.44 47.39±0.61 66.24±0.58

x2 73.19±0.63 88.23±0.36 77.13±0.72 90.39±0.41 78.47±0.68 89.95±0.44 47.13±0.58 66.36±0.57

C. Ablation study

Ablation experiments were performed on the critical compo-
nents of the method proposed in this article, and experiments
were conducted on CIFAR-FS, miniImageNet, tieredImageNet,
and FC-100.

Projection head: The projection head increases the model’s
ability to express features by mapping the embedding vector
to a higher-dimensional space, thereby improving classification
accuracy in small-sample learning scenarios, as shown in
TABLE II.

Different inputs: As shown in TABLE III, the results vary
with other inputs to fc(2). Both squaring and taking the absolute
value of the inputs can improve performance. Squaring increases
intra-class similarity and decreases inter-class similarity, thereby
achieving better performance.

D. Conclusion

We have introduced a new method called CAFASA, which
enhances the model’s efficiency in identifying critical features
for image classification tasks through self-supervised learning
and feature fusion. Experiments have shown that CAFASA
performs exceptionally well across multiple datasets.
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