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Abstract—To develop fine-grained few-shot image classification,
it is crucial to study how to increase inter-class variation and re-
duce intra-class variation. A recently proposed method called the
Bidirectional Feature Reconstruction Network (BiFRN) increases
inter-class variation by using support sets to reconstruct query
sets and reduces intra-class variation by query sets to reconstruct
support sets. In our study, we found a problem with BiFRN:
The calculation of self-attention weights is affected by noise or
inaccurate information, which may cause the model to over-focus
on specific locations or ignore features at other locations. To
solve this problem, we proposed an Agent Attention Bidirectional
Feature Reconstruction Network (AAFRN), which extends BiFRN
by fusing an Agent Attention Model to generate a new feature
map for each feature map. Compared with BiFRN, our method
can enhance feature expressiveness, facilitate global contextual
information capture within feature maps and enable weighted
feature fusion across various positions. The experimental results
on three widely used fine-grained image classification datasets
demonstrate that the proposed method achieves competitive
performance compared to other methods.

I. INTRODUCTION

Fine-grained few-shot image classification [1] has recently
become an important approach to addressing the data scarcity
problem that is widely faced by fine-grained analysis [2].
According to the traditional few-shot setting, effective model
transfer is achieved when limited support samples are provided.
Unlike conventional methods, we deal with problems with fine-
grained features, which means that the model needs to focus on
learning subtle but discriminative features. This allows classi-
fication not only in terms of categories but, more importantly,
can distinguish fine-grained visual differences within a class
to achieve fine-grained classification between instances within
the class.

In fine-grained few-shot image classification, the self-
attention mechanism plays an important role [3]. This mech-
anism improves the classification performance and discrim-
ination ability of the model by emphasizing the key areas
in the image. Vaswani et al. [3] introduced the self-attention
mechanism, leading to the development of a novel network
architecture known as the Transformer. This architecture not
only plays a role in natural language processing [3]–[5], but
also plays a role in image classification [5]–[7]. In light of the
attention mechanism, some few-shot learning methods began
to leverage the self-attention mechanism. Someone proposed
a Transformer-based Few-shot Embedding Adaptation (FEAT)
algorithm for Few-shot learning [8]. In paper [8], the author
tried to establish the mapping relationship between the sets

and found that the Transformer was the best choice. The
Transformer model can effectively capture the interaction
between different images in the set so that the coordinated
adaptation between each image can be achieved. Unlike the
Transformer structure in FEAT, exclusively applied to support
samples. CTX [9] employs a self-attention mechanism to com-
pute spatial attention weights between the query sample and
support sample, facilitating the learning of a category prototype
aligning with the query. Subsequently, the classification of
the query involves evaluating the distance from the query
to the matched category prototype. The introduced few-shot
classification method additionally integrates a self-attention
mechanism to optimize reconstruction weights within the self-
construction model and mutual reconstruction model. PVT [10]
uses sparse attention patterns to reduce the computational
load by decreasing the number of keys and values. While
effective, these approaches sacrifice the ability to model long-
range dependencies, remaining less powerful than the global
self-attention mechanism. NAT [11] simulates the computation
of convolution and calculates the attention of each featured
neighborhood. DAT [12] constructs a deformable attention
module for data-specific attention patterns. BiFormer [13]
employs a two-tier routing attention mechanism to identify
the region of interest for each query dynamically. Xiong et
al. [14] demonstrated that the attention mechanism enables
the model to capture subtle feature differences and achieve
better performance in small samples. The integration of at-
tention mechanisms in fine-grained few-shot image learning
addresses data scarcity challenges, enhancing model accuracy
and generalization [15]. Our research found that although
BiFRN achieves the goal of increasing inter-class variation
and reducing intra-class variation through the bidirectional
reconstruction method, there is still room for improvement.
Agent attention adopts agent tokens for aggregating and prop-
agating global information, offering high expressiveness with
low computational overhead. This method enhances feature
expressiveness, facilitates global contextual information cap-
ture within feature maps, and enables weighted feature fusion
across various positions.

Initially, efforts concentrated on crafting intricate network
structures [1], [16], [17]. however, the outcomes fell short of
expectations when juxtaposed with the original approaches.
Recent trends have witnessed the surge in popularity of
reconstruction-based techniques [9], [18], exemplified by ap-
proaches like few-shot Classification With Feature Map Re-



Fig. 1. The proposed agent attention bidirectional feature reconstruction network. fθ is the feature extraction model. FSRM is a feature self-reconstruction
model. AAFRM is the Agent Attention feature reconstruction model. FMRM is a feature mutual reconstruction model.

construction Networks (FRN) [19], showcasing superior per-
formance. Through aligning support and query features, these
models naturally foster fine-grained transfer. However, while
these models can emphasize nuanced and distinct regions,
the semantic content represented by these regions may dif-
fer across samples of the same category. This highlights
the substantial intra-class discrepancies that persist within
reconstruction-based methods, hindering comprehensive fine-
grained learning. In essence, these approaches primarily aug-
ment inter-class disparities and fall short in mitigating intra-
class variations.

Our agent attention feature reconstruction mainly consists
of four Models: 1) feature extraction Model. 2) Feature Self-
Reconstruction Model (FSRM). 3) Agent Attention Feature
Reconstruction Model (AAFRM). 4) Feature Mutual Recon-
struction Model (FMRM). With the cooperation of these mod-
ules, we can not only effectively improve the expressiveness
of features and help the model to be better trained but also
increase inter-class differences and reduce intra-class differ-
ences.

To summarise, our work makes a triple contributions:
• It reveals that the critical issue for fine-grained few-shot

image classification is to increase inter-class variation and
reduce intra-class variation.

• By integrating agent attention, the expressiveness of fea-
ture maps is improved.

• The experimental structure proves the effectiveness of the
method.

II. METHODOLOGY

In this section, we will introduce the proposed method in
this paper, starting with the formula of the method, followed by
an overview and an in-depth description of each component.

As shown in Fig. 1, our network mainly consists of four
models. The first model is the feature extraction model fθ,
which is used to extract deep convolutional image features.
This part can be a residual network or a traditional con-
volutional network. The second model is the feature self-

reconstruction Model (FSRM), which self-reconstructs the
convolutional features of each image based on the self-
attention mechanism. This model can make similar local
features more similar and dissimilar local features more dis-
similar, and it is also conducive to the mutual reconstruction
of subsequent features. The third model is the Agent Attention
Feature Reconstruction Model (AAFRM), which can improve
the expressiveness of the model and help the model capture
global context information in the feature map. The fourth
Model is the Feature Mutual Reconstruction Model (FMRM),
which not only reconstructs the query sample using the support
sample but also reconstructs the support sample using the
query sample and uses the Euclidean distance to calculate the
distance between the query sample and the reconstructed query
sample, as well as the distance between the support sample and
the reconstructed support sample. The weighted sum of these
two distances is used to classify the query sample.

A. feature self-econstruction Model (FSRM)

For a C-way K-shot task, we input C × (K +M) samples
xi into the feature extraction Model fθ to extract features
x̂i = fθ(xi) ∈ Rd×r, where r = h × w and d is the
channel number, h and w are the height and width of the
feature. First, we shape the feature x̂i as r local features in
the spatial positions [x̂1

i , x̂
2
i , · · · , x̂r

i ], r = h × w. Then the
sum of the local feature x̂j

i and the corresponding spatial
position embedding Epos ∈ Rr×d is calculated as the input
of the transformer, yi = [x̂1

i , x̂
2
i , · · · , x̂r

i ] + Epos, where Epos

uses sinusoidal position encoding. The output of this part
is calculated according to the self-attention in Transformer
Encoder. Therefore, the output ŷi of this Model was calculated
using (2),

To simplify we abbreviate softmax attention as (1),

σ(QKT )V ≜ Attn(Q,K, V ) (1)

ŷi = σ
(
yiW

Q
ϕ (yiW

K
ϕ )T

)
yiW

V
ϕ , ŷi ∈ Rr×d (2)



Fig. 2. Agent Attention Feature Reconstruction Model

where σ(·) represents the Softmax function, Attn(·) is the
self-attention mechanism, ≜ indicates equivalence, WQ

ϕ ,WK
ϕ ,

and WV
ϕ are a set of learnable weight parameters with d× d

size.

B. Agent Attention Feature Reconstruction Model (AAFRM)

Each feature ŷi is the input of AAFRM, and the output of
this Model is ẑi ∈ Rd×r was calculated using (6). The Q,K, V
was calculated using (3),

Q = yWQ,K = yWK , V = yWV (3)

where WQ,WK ,WV and WA are a set of learnable weight
parameters with d × d size. a represents the agent token in
the agent attention, which is the result of Q adaptive average
pooling was calculated using (4),

A = aWA, a = Polling(Q) (4)

where polling(·) is adaptive average pooling, A ∈ Rd×r, d is
the dimension.

The agent attention consists of two softmaxes: agent aggre-
gation and agent broadcast. Specifically, we treat A as query
Q and perform an attention calculation between A,K, V to
aggregate agent features VA from all values. We call this
attention calculation aggregation. Afterward, we use A as keys,
VA as value, and query matrix Q to perform a second attention
calculation called agent broadcast. The final output ẑ was
calculated using (5),

O = AttnS(Q,A,AttnS(A,K, V )︸ ︷︷ ︸
Agent Aggregation

)

︸ ︷︷ ︸
Agent Broadcast

(5)

It is equivalent to:

ẑ = σ(QAT )σ(AKT )V (6)

where σ(·) represents the Softmax function.

C. Feature Mutual Reconstruction Model (FMRM)

The third Model is the Feature Mutual Reconstruction
Model (FMRM), which contains two operations: reconstruct-
ing support features in one class given a query feature and
reconstructing the query feature given support features in one
class. After AAFRM, we can obtain the support features
of the reconstructed c class, Sc = [ẑck] ∈ Rkr×d, where
k ∈ [1, · · · ,K]andc ∈ [1, · · · , C], and reconstructed query
feature Qi = ẑi ∈ Rr×d, where i ∈ [1, · · · , C × M ]. Sc

multiplies by weights WQ
γ ,WK

γ and WV
γ , repectively, obtain-

ing SQ
C , SK

C , SV
C , where WQ

γ ,WK
γ ,WV

γ ∈ Rd×d. Similarly,
Qi multiplies by weights WQ

γ ,WK
γ and WV

γ , repectively,
obtaining QQ

i , Q
K
i , QV

i .
The i query feature Q̂ reconstructed from the c class support

feature SV
c and the c class support feature Ŝ) reconstructed

from the i query were calculated by (7) and (8),

Q̂ = σ
(
QQ

i (S
K
c )T

)
SV
c , Q̂ ∈ Rr×d (7)

Ŝ = σ
(
SQ
c

(
QK

i

)T)
QV

i , Ŝ ∈ Rkr×d (8)

The last part is the Euclidean distance metric (EDM). The
distance between the query sample Qi and the support sample
in class c and the distance between the support sample in class
c and the query sample Qi are called dQS , and dSQ . And dQS,

and dSQ were calculated using (9) and (10),

dQS = ||QV
i − Q̂||2 (9)

dSQ = ||SV
c − Ŝ||2 (10)

where || · || is the Euclidean distance, λ1 and λ2 are learnable
weight parameters, and both of them are initialized as 0.5. τ
is a learnable temperature factor. The total distance dci was
calculated by (11). Then normalize to get d̂ci , which was
calculated using (12),

dci = τ(λ1dQS + λ2dSQ) (11)

d̂ci =
e−dc

i∑C
c=1 e

−di
c

(12)

Based on d̂ci , the total loss in one C-way K-shot task was
calculated using (13),

L = − 1

M × C

M×C∑
i=1

C∑
c=1

1(yi = c) log d̂ci (13)

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets

For performance evaluation, we assessed our method
on three benchmark fine-grained datasets: CUB-200-2011
(CUB) [28], consisting of 11,788 images across 200 bird
species; Stanford-Dogs (Dogs) [29], comprising 20,580 an-
notated images representing 120 dog breeds worldwide; and
Stanford-Cars (Cars) [30], a dataset featuring 16,185 images
covering 196 car types. All images were resized to 84×84.



TABLE I
RESULTS ON 1-SHOT AND 5-SHOT TASKS IN THE CONV4 BACKBONE. THE DATASETS WE USE ARE:CUB-200-2011

(CUB), STANFORD-DOGS (DOGS) AND STANFORD-CARS (CARS).

Model
CUB Dogs Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet (NerulPS 17’) [20] 64.82±0.23 85.74±0.14 46.66±0.21 70.77±0.16 50.88±0.23 74.89±0.18
Relation (CVPR 18’) [21] 63.94±0.92 77.87±0.64 47.35±0.88 66.20±0.74 46.04±0.91 68.52±0.78

DN4 (CVPR 19’) [22] 57.45±0.89 84.41±0.58 39.08±0.76 69.81±0.69 34.12±0.68 87.47±0.47
PARN (ICCV 19’) [23] 74.43±0.95 83.11±0.67 55.86±0.97 68.06±0.72 66.01±0.94 73.74±0.70
SAML (ICCV 19’) [24] 65.35±0.65 78.47±0.41 45.46±0.36 59.65±0.51 61.07±0.47 88.73±0.49

DeepEMD (CVPR 20’) [25] 64.08±0.50 80.55±0.71 46.73±0.49 65.74±0.63 61.63±0.27 72.95±0.38
LRPABN (TMM 21’) [1] 63.63±0.77 76.06±0.58 45.72±0.75 60.94±0.66 60.28±0.76 73.29±0.58

BSNet (TIP 21’) [26] 62.84±0.95 85.39±0.56 43.42±0.86 71.90±0.68 40.89±0.77 86.88±0.50
CTX (NeurrIPS 20’) [9] 72.61±0.21 86.23±0.14 57.86±0.21 73.59±0.16 66.35±0.21 82.25±0.14
FRN (CVPR 21’) [19] 74.90±0.21 89.39±0.12 60.41±0.21 79.26±0.15 67.48±0.22 87.97±0.11

BiFRN (AAAI 23’) [27] 79.08±0.20 92.22±0.10 64.74±0.22 81.29±0.14 75.74±0.20 91.58±0.09

Ours 79.76±0.20 92.57±0.10 65.30±0.22 81.30±0.15 77.22±0.19 91.85±0.09

TABLE II
RESULTS ON 1-SHOT AND 5-SHOT TASKS IN THE RESNET12 BACKBONE. THE DATASETS WE USE ARE:CUB-200-2011

(CUB), STANFORD-DOGS (DOGS) AND STANFORD-CARS (CARS).

Model
CUB Dogs Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
ProtoNet (NerulPS 17’) [20] 81.02±0.20 91.93±0.11 73.81±0.21 87.39±0.12 85.46±0.19 95.08±0.08

CTX (NeurIPS 20’) [9] 80.39±0.20 91.01±0.11 73.22±0.22 85.90±0.13 85.03±0.19 92.63±0.11
DeepEMD (CVPR 20’) [25] 75.59±0.30 88.23±0.18 70.38±0.30 85.24±0.18 80.62±0.26 92.63±0.13

FRN (CVPR 21’) [19] 84.30±0.18 93.34±0.10 76.76±0.21 88.74±0.12 88.01±0.17 95.75±0.07
BiFRN (AAAI 23’) [27] 85.44±0.18 94.73±0.09 76.89±0.21 88.27±0.12 90.44±0.15 97.49±0.05

Ours 86.16±0.17 94.82±0.07 76.89±0.21 88.72±0.12 89.77±0.15 97.22±0.06

B. Implementation Details

In our experiments, we tested two widely used backbone ar-
chitectures: Conv-4 [19] and ResNet-12 [19]. The experiments
were conducted using PyTorch on a single NVIDIA GeForce
RTX 4090 GPU. We trained Conv-4 and ResNet-12 models
for 1200 epochs with a weight shrinkage of 0.9, an initial
learning rate of 0.1, and a 10x learning rate reduction every
400 epochs. For Conv-4 models, we employed 30-way 5-shot
training, while for ResNet-12 models, we used 15-way 5-shot
training. Regular data augmentation techniques such as center
cropping, random horizontal flipping, and color jittering were
applied to enhance stability.

C. Experimental Results

We use Conv-4 and ResNet-12 as the backbone of all
compared models and test 5-way 1-shot and 5-way 1-shot
classification performance. The outcomes utilizing Conv-4 and
ResNet-12 as backbone networks are detailed in Table I and
Table II, correspondingly.

In Table I, we can see that when Conv-4 is adopted, our
method achieves the highest accuracy on all three datasets. In
Table II, Apart from the result on the cars [30] dataset where
performance falls slightly behind the BiFRN method when
the ResNet-12 is adopted, our method achieves the highest

accuracy.
In summary, compared with other newly proposed methods,

our method has achieved stable and excellent performance
on three fine-grained image datasets for 5-way 1-shot and
5-way 1-shot classification tasks. This is mainly due to our
network. AAFRM enhances feature expressiveness, facilitates
global contextual information capture within feature maps, and
enables weighted feature fusion across various positions.

D. Ablation Study

To evaluate our method and model components, we em-
ployed Conv-4 and ResNet-12 as backbones and conducted
ablation studies on three datasets.

First, we verify the validity of our approach by remov-
ing some model components. Then, we run the two model
components, FSRM and AAFRM, in parallel to verify the
effectiveness of the method. As shown in Table III, we remove
FSRM and AAFRM, respectively, and run FSRM and AAFRM
in parallel. The experimental results in Table III show that
our fusion approach’s model performance is further improved
when using Conv-4 as the backbone network. However, when
using ResNet-12 as the backbone network, the model perfor-
mance is only improved on a portion of the dataset.



TABLE III
RESULTS ON 1-SHOT AND 5-SHOT TASKS WITH DIFFERENT BACKBONES ON CUB, DOGS, AND CARS DATASETS.

Backbone Method
CUB Dogs Cars

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Conv-4

Baseline (ProtoNet) 64.82±0.23 85.74±0.14 46.66±0.21 70.77±0.16 50.88±0.23 74.89±0.18
(FSRM) 79.08±0.20 92.22±0.10 64.74±0.22 81.29±0.14 75.74±0.20 91.58±0.09

(AAFRM) 78.21±0.20 91.82±0.11 64.61±0.22 81.25±0.14 75.40±0.20 91.04±0.10
(AAFRM, FSRM) 78.74±0.20 91.83±0.11 63.98±0.22 81.17±0.14 74.56±0.20 90.70±0.10

(Ours) 79.76±0.20 92.57±0.10 65.30±0.22 81.30±0.15 77.22±0.19 91.85±0.09

ResNet-12

Baseline (ProtoNet) 81.02±0.20 91.93±0.11 73.81±0.21 87.39±0.12 85.46±0.19 95.08±0.08
(FSRM) 85.44±0.18 94.73±0.09 76.89±0.21 88.27±0.12 90.44±0.15 97.49±0.05

(AAFRM) 85.14±0.18 94.78±0.08 76.89±0.21 88.76±0.12 90.14±0.15 97.34±0.05
(AAFRM, FSRM) 85.18±0.18 94.48±0.09 76.80±0.21 88.93±0.11 89.75±0.15 97.45±0.05

(Ours) 86.16±0.17 94.82±0.07 76.89±0.21 88.72±0.12 89.77±0.15 97.22±0.06

IV. CONCLUSIONS

In this paper, we integrated an agent attention Model to
enhance feature expressiveness, facilitate global contextual
information capture within feature maps, and enable weighted
feature fusion across various positions. Extensive experiments
show that the proposed method performs well in three fine-
grained image datasets and is very competitive.
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