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Abstract— As the performance of machine vision continues 
to improve, it is being used in various industrial fields to 
analyze and generate massive amounts of video data. 
Although the demand for and consumption of video data by 
machines has increased significantly, video coding for 
machines needs to be improved. Spatial re-sampling plays a 
critical role in video coding for machines because it reduces 
the volume of the video data to be processed while 
maintaining the shape of the data’s features that are important 
for the machine to reference when processing the video. An 
effective method of determining the intensity of spatial re-
sampling as an efficient coding tool for machines is still in the 
early stages. Here, we propose a method of determining an 
optimal scale factor for spatial re-sampling by collecting and 
analyzing information on the number of objects and the ratio 
of the area occupied by the object within a picture.  

I. INTRODUCTION 
As deep-learning machine vision is now used widely in 
various industrial and research fields, the amount of video 
data being produced and distributed, not only by humans 
but also by machines, has been increasing rapidly. To 
manage these ever- growing volumes of data, many video 
codecs have been introduced, such as advanced video coding 
(AVC), high-efficiency video coding (HEVC), and versatile 
video coding (VVC) [1–2]. Research has also been 
progressing on perceptually optimized video coding. 
However, codecs based on human visual or sensory systems 
do not guarantee efficient compression of video data when 
used for deep-learning machine vision. There is therefore a 
need to study video coding that targets video data consumed 
by machines rather than humans [3-4]. An understanding of 
how machines interpret video data is needed to develop 
unprecedented coding technology for machines rather than 
for humans. However, a variety of machine vision systems 
have been designed, and how video data are under- stood 
differs among these system. It is essential to maintain as 
much as possible the contours and other common features 
that machines collect to interpret video while increasing 
compression efficiency. Spatial re-sampling can easily 
reduce the volume of video data while significantly 

maintaining the position or arrangement of objects and 
boundaries, which are common features in video data. In 
this paper, we apply a new spatial re-sampling method 
to each picture in the input video to maximize compression 
efficiency while maximizing retention of the common 
features that the machines need to interpret the video data. 
In the proposed method, the ratio of the area occupied by 
a detected object in a picture is calculated, and the optimal 
scale factor for spatial re-sampling for each picture is 
determined using an object occupancy distribution (OOD), 
which is generated based on the size and number of 
detected objects. Figure 1 is a flowchart for determining 
the optimal scale factor for spatial re-sampling based on 
the proposed OOD. 

Fig. 1   Architecture of the proposed method for determining the 
optimal scale factor for spatial re-sampling based on OOD. 

 
II. OOD FOR SPATIAL RE-SAMPLING 

We used the test video sequences in the SFU-HW 
dataset [5], and explored the appropriate scale factors for 
spatial re-sampling for each video sequence through video 
data analysis and OOD generation.  

 
A. Analysis of the impact of spatial re-sampling on machine 

vision Performance 
Object detection was performed on the spatially up-

sampled sequences at the same resolution as the original, 
and the performance results of the object detection accuracy 
(mAP) are organized by class and plotted in Figure 2. In 
Figure 2, several important phenomena are apparent. First, 
the scale factor for the spatial re-sampling increases as 
the object detection accuracy decreases because the 
boundaries of the image become increasingly blurred as 
the intensity of the spatial re-sampling strengthens. 
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Second, the machine accuracy drops significantly in a specific 
degree of re-sampling intensity depending on the class of the 
sequences, which are classified according to the resolution size. 

Fig. 2   Variation in object detection accuracy depending on scale 
factors for spatial re-sampling. 

  
B. OOD generation to determine an optimal re-sampling 

threshold 
In the analysis of Section A, the stronger the spatial re-

sampling, the weaker the machine vision performance, 
and the object detection accuracy varies depending on the 
video resolution and the size and number of detected 
objects. The OOD is generated based on the detected object 
information including the size of detected objects within a 
single frame. The bounding box size of each detected object 
is divided by the original resolution size to obtain the 
object occupancy ratio (OOR). A histogram is then created 
depending on the OOR distribution. In simple terms, the 
OOR is the ratio of the detected object’s size to the original 
resolution size, and the OOD is a histogram representing the 
distribution of the OOR. Figure 3 shows the experiment 
results related to OOD generation obtained by performing 
spatial down- sampling and object detection at increments 
of 10% from 10% to 100% of the original resolution for the 
84th frame of the BasketballDrive sequence. Figure 3(a) 
depicts the results of object detection with bounding boxes 
for the spatial down-sampled pictures at various scales. 
Figure 3(b) depicts the generated OOD based on the 
detection results for each spatial down-sampled picture. It 
includes a histogram of object counts corresponding to 
various OOR ranges. Figure 3(c) is a graph expressing the 
kernel density estimation of Figure 3(b). Through Figure 
3(c), the optimal re-sampling threshold can be explored 
visually. Figure 3(b) makes it clear that the distribution 
behaviors for the scale factors ranging from 50% to 100% 
are similar to each other. However, the distribution 
behaviors for scale factors below 50% are substantially 
different from those for the scale factors beyond 50%. We 
can therefore conclude that the optimal re-sampling 
threshold is 50%. Up to this threshold, we can keep the 

original OOD characteristics of the original picture with 
100% resolution. 

Fig. 3   Experiment results related to OOD generation for the 84th 
frame of the Bas- ketballDrive sequence: (a) Object detection 

results with bounding boxes for spatially down-sampled pictures 
with scale factors of 100%, 70%, 50%, and 30%, respectively, (b) 

Generated OODs and (c) Kernel density of the OOD. 

 
III. DETERMINATION OF THE OPTIMAL SCALE FACTOR 

Figure 4 is a flowchart of the process for determining the 
optimal scale factor for spatial re-sampling for each picture. 
The proposed process consists of four steps. First, the object 
detection network model generates object information, such 
as the bounding box size of detected object and the OOR for 
the original and spatial down- sampled pictures. Then, the 
OODs shown in Figure 4(b) are generated for all the 
candidate scale factors by using the object information. The 
next step is to analyze the correlation among the generated 
OODs to explore the similarity of the spatial down- sampled 
pictures to the original picture in terms of object detection 
performance. For analysis of similarity, we compared the 
correlation between the original picture with 100% 
resolution and the down-sampled picture with a scale 
factor x, where x is an element of the scale factor list SL 
which is {10%, 20%, 30%, . . . , 90%}. In this paper, the 
correlation was obtained using the OOD, which is the 
histogram representing the distribution of OOR. 
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Fig. 4   Flowchart for determining the optimal scale factor for 
spatial re-sampling.  

 
If the correlation exceeds the threshold value of γ = 0.9, 

the down-sampled picture is sufficiently similar to the 
original picture in terms of object detection. By gathering 
all the scale factors satisfying the threshold condition, we 
constitute the Correlated Scale- factor List (CSL). The CSL 
is a list of scale factors expected to have no significant 
difference in machine vision performance compared with 
the original picture. Among the CSL elements, the 
minimum scale factor is selected to be the optimal scale 
factor for re-sampling. If no element exists in the CSL, no 
definite optimal scale factor can be selected. In this case, 
the object detection performance even for the original 
picture with 100% resolution was found to be low. We 
applied the strongest spatial re-sampling ratio to achieve 
the utmost compression efficiency at the cost of slight 
machine performance loss. 

Figure 5 is a conceptual diagram of an exemplary process 
for determining the opti- mal scale factor for spatial re-
sampling among the candidate scale factors of 80%, 60%, 
40%, and 20%. Because the OOD of the original picture and 
the OODs of the down-scaled pictures with 80% and 60% 
scale factors are estimated to be similar to each other, the 
scale factors of 80% and 60% are considered to be the 
candidates for an optimal scale factor for spatial re-sampling. 
Given the achievable compression efficiency, a scale factor 
of 60% corresponding to the lowest scale factor of the 
candidates was the optimal scale factor. 

 

Fig. 5   Conceptual diagram of the proposed method for 
determining the optimal scale factor for frame-level spatial re-

sampling.  

 
IV. EXPERIMENTAL RESULTS 

This section describes the experimental verification of 
how much video data can be reduced and how much 
machine performance can be maintained by applying the 
proposed method. The experiment began by applying a re-
sampling operation with a scale factor of {10%, 20%, 
30%, . . . , 90%} to the original picture, after which object 
detection was performed using Faster-RCNN X101-FPN 
model. The proposed method determined the optimal scale 
factor for each picture. The machine accuracy error, ε, 
and the video data reduction ratio, C, were used to evaluate 
the performance of the proposed method. The machine 
accuracy error ε means the performance decrease in the 
object detection that occurs when the proposed spatial re-
sampling with an optimal scale factor is applied compared 
with the object detection accuracy achieved for the original 
picture with 100% resolution (Equation 1). In this equation, 
Accuracyo represents the object detection accuracy for the 
original picture and Accuracyp is the object detection 
accuracy obtained for the down-sampled picture by the 
proposed method. The machine accuracy error ratio Er is 
defined as the ratio between ε and Accuracyo as shown in 
Equation 2. C and Cr represent the data reduction ratio 
and rate, respectively, where C is the ratio of the original 
video data rate to the down-sampled video data rate, and Cr 
is the corresponding reduction rate expressed as a 
percentage. These are defined in Equations 3 and 4. From 
Equation 1 to 4 , the subscript o and p indicate the original 
picture and the down-sampled picture obtained by the 
proposed method, respectively 

  =   −   ≥ 0 (1) 
           = /  (2) 
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 = 1 −    × 100 (4) 

The data reduction–to–accuracy error ratio (DRAER) in 
Equation 5 is used to evaluate the achieved reduction in the 
video data volume against the obtained Er. 

  = 10 ∗  (/) () (5) 
where the Er excludes the case of value 0 indicating no 

change in the resolution of the video data after applying 
the proposed method, that cannot happen in practice. 

Table I is the number of video frames classified to each 
scale factor for spatial down- sampling. The behavior of the 
classification depends highly on the characteristics of the 
video frames in terms of the size and the number of 
objects detected. 

 
Table I. Number of video frames classified to each scale 

factor for spatial down- sampling. 

 

Table II describes the experimental results obtained 
using the proposed method for the SFU-HW dataset. It 
compares the mAP for the original video with 100% 
resolution and the mAP for the down-sampled video by 
the proposed method, and shows the value of Er, as well 
as C. In most cases, the Er related to the ability to keep the 
object detection accuracy is less than 10%, which is a 
satisfactory performance. Only the Traffic and 
BQTerrace sequences have Er values exceeding 10% 
(16.97% and 37.44%, respectively). Except for a few 
sequences, the Er is stays within 10%, indicating that the 
machine vision performance can be stable for most test 
sequences. As for the exceptional cases in which the Traffic 
and BQTerrace sequences were used for the test, most of the 
video frames are classified into the 10% scale factor. 

 

 
Table II. Experimental results of the proposed method for 

the SFU-HW dataset. 

 
V. CONCLUSIONS 

In this paper, we devised an OOD to determine the 
optimal scale factor for spatial re-sampling to optimize 
video compression efficiency for machines. The OOD was 
created by applying the area information occupied by the 
detected object in the picture. By analyzing the similarity of 
OODs for various candidate scale factors between the down-
sampled and the original pictures, we were able to obtain the 
optimal scale factor for the frame-level re-sampling.  
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Sequence Number of video frames per each scale 
factor 

Class name 100 90 80 70 60 50 40 30 20 10 
A Traffic 0 0 0 0 0 1 1 0 3 28 
B ParkScene 1 4 2 4 2 4 5 4 3 4 
B Cactus 13 11 1 5 8 0 0 4 10 45 
B BasketballDriv

e 
8 13 3 5 11 9 11 22 15 0 

B BQTerrace 0 0 0 0 0 0 0 0 27 102 
C RaceHorsesC 62 12 11 6 2 2 1 1 0 0 
C BQMall 62 23 14 12 8 5 3 2 0 0 
C PartyScene 27 19 14 7 4 7 8 8 3 0 
C BasketballDrill 20 12 7 5 4 5 3 5 4 0 
D RaceHorsesD 40 19 12 8 4 4 5 4 1 0 
D BQSquare 21 31 9 11 5 11 39 2 0 0 
D BlowingBubble

s 
28 24 21 10 8 5 0 0 1 0 

D BasketballPass 19 10 6 7 6 7 6 4 0 0 

Sequence 

Name 

Orig. 

(mAP) 

Prop. 

(mAP) 

 
Er 

C   
Cr 

DRAER 

(dB) 

Traffic 42.13 34.98 16.97% 7.67 86.96% 16.55 
ParkScene 54.07 49.14 9.11% 2.01 50.29% 13.44 

Cactus 70.22 68.98 1.77% 2.44 59.07% 21.40 
Basketball

Drive 
42.04 40.95 2.58% 1.91 47.71% 18.70 

BQTerrace 40.04 25.05 37.44% 8.27 87.90% 13.44 
RaceHorse

sC 
25.43 24.41 4.00% 1.09 8.60% 14.37 

BQMall 43.02 41.39 3.80% 1.16 13.66% 14.84 
PartyScene 67.05 65.67 2.06% 1.34 25.33% 18.13 
Basketball

Drill 
48.22 49.77 3.23% 1.35 25.73% 16.20 

RaceHorse
sD 

29.79 28.50 4.32% 1.21 17.30% 14.47 

BQSquare 34.85 31.59 9.35% 1.46 31.42% 11.93 
BlowingBu

bbles 
58.73 59.72 1.69% 1.20 16.42% 18.50 

Basketball
Pass 

46.51 44.93 3.40% 1.34 25.61% 15.97 


