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Abstract—This paper describes experimental investigation of
music representations to draw the full potential of the Trans-
former with the self-attention mechanism for symbolic music
generation. To use sequence-to-sequence model like the Trans-
former originally proposed for natural language processing, one
typically serializes a musical score into a sequence of event- or
note-based tokens without concern for the impact on the quality of
generated music. The semantic invariance of music with respect to
the time and pitch shifts is attributed to the positional relativity of
musical notes over the time-pitch plane in which beats and pitch
classes are repeated at intervals of bars and octaves, respectively.
We here hypothesize that the capability of the self-attention
mechanism to learn the musically meaningful rhythm, melody,
and harmony is limited because the relativity and cyclicity of time
and pitch information are not explicitly represented in the token
sequence. To solve this problem, we propose a cyclicity-aware
relative time and pitch encoding unique to music for the attention
mechanism. Comprehensive evaluation using the POP909 dataset
demonstrated that the proposed Transformer works better with
event- or note-based score tokenization1.

I. INTRODUCTION

The Transformer [1], a sequence-to-sequence learning model
originally proposed for natural language processing (NLP), has
revolutionized generative tasks in music information process-
ing [2]. To use the Transformer for symbolic music generation,
one needs to represent a musical score as a sequence of
tokens in an invertible manner because the input and output of
the Transformer must be token sequences. In the event-based
score tokenization (e.g., MIDI [3] and REMI [4]), each token
corresponds to a musical event representing the onset time,
instrument, pitch, or duration of a musical note, where multiple
events collectively represent a musical note. In the note-based
tokenization (e.g., OctapleMIDI [5] and MuMIDI [6]), each
token corresponds to a musical note, i.e., a tuple of the onset
time, instrument, pitch, and duration of the note. Note that the
event-based representation does not guarantee the consistency
of token sequences, i.e., token sequences cannot always be
inverted to musical scores due to the possibility of missing or
overlapping note attributes.

In these representations, the relationships between musical
notes over time and pitch are not explicitly considered (Fig. 1).
The time relativity is crucial in forming the semantic invariance
of music to time shifts. Similarly, the pitch relativity is another

1The demo page is available at https://tatsuropfgt.github.io/CirRelAttn.

Fig. 1. A token xn in the note-based representation holds the absolute pitch
value of 40 (E2), and another token xm holds the absolute pitch value of
79 (G5). On the other hand, the relative pitch distance 39 (3 octaves and 3
semitones) is not explicitly captured.

key feature of music because a musical piece remains seman-
tically identical with respect to key transposition. The relative
index, pitch, and onset (RIPO) attention mechanism [7] is a
noticeable approach that considers the time and pitch relativity
for sinusoidal encoding of note-based tokens.

As a piece-agnostic nature of music, beat and pitch cir-
culations play a vital role in music. The bar serves as a
fundamental unit of time. Musical themes, for example, tend
to be repeated at an interval of 1, 2, 4, or 8 bars. Similarly, the
octave serves as a fundamental unit of pitch. Musical sounds
whose pitches differ by octaves are perceived as having similar
resonance because the harmonic structures of these sounds
significantly overlap with each other. As illustrated in Fig. 1,
it is musically meaningful to interpret 96 time steps as 2 bars
and 39 semitones as 3 octaves plus 3 semitones (a minor 3rd).
Appropriate treatment of these fundamental units would thus
be considered as a key to achive musically-meaningful music
generation compatible with standard music theory.

In this paper, we propose a variant of the attention mech-
anism named Circular Relative Attention (CirRelAttn) mech-
anism. Time relativity is decomposed into bar units and their
remainders, and pitch relativity into octave units and their
remainders. This method can effectively learn the repetitive
structures at specific intervals and generates music with en-



Fig. 2. The top figure shows an example of event-based and note-based representations, along with the absolute time T and the pitch sequence P. The bottom
figure illustrates decomposed relative pitch matrices, which are designed to emphasize the circularity of octaves

hanced coherence. We evaluated our approach using the POP-
909 dataset[8], a collection of Chinese popular music rich
in repetitive structures. Objective evaluation results showed
that our method continually generates musical pieces closer
to test data than previous approaches. Additionally, subjective
evaluations revealed that human listeners favored the pieces
produced by our method.

II. RELATED WORK

A. Music Representation

Music representations must be designed carefully to convert
a symbolic score of polyhonic music into a one-dimensional
sequence of tokens that sequence-to-sequence models can
directly deal with [2]. This choise is crucial because it has a
strong impact on the model ability to learn musical structures.
The event-based representations [3], [4] represents musical
events such as note-on, note-off (or duration), pitch as tokens.
The compound (CP) word representation [9] aggregates mu-
sical events based on their specific roles into single tokens.
This was extended to the note-based representation [5], [6],
where each note is represented by a single token, enhancing
the efficiency of sequence length.

B. Music Structure Modeling

A few approaches have been explored to model the time and
pitch structure of music. Chuan and Herremans [10] proposed
a method that captures musical relationships between pitches
inspired by the Tonnetz method. They encoded these relation-
ships into a 2D representation and utilized a convolutional
neural network (CNN) and a long short-term memory (LSTM)
network for generating musical scores. Music Transformer [11]
claimed the importance of relative information in music and
incorporated the index intervals between tokens into the self-
attention mechanism. This approach was extended to jointly
consider the time and pitch relativity of music with the RIPO
attention mechanism [7], which embeds the pitch and onset

distances between notes into self-attention mechanism with
sinusoidal encoding. Recently, Structure-PE [12] has incorpo-
rated the time, section, chord, and melodic pitch relationships
between time steps into the self-attention mechanism.

III. PROPOSED METHOD

We define music representations and review the existing self-
attention mechanisms (RelAttn and RIPO). We then propose
the Circular Relative Attention (CirRelAttn).

A. Music Representations

We represent a musical score as a sequence of event-
based (Section III-A1) or note-based (Section III-A2) tokens
denoted by x = (x1, ...,xL). For simplicity, we represent
a musical score using only essential attributes obtained by
omitting performance-related ones (e.g., tempo and velocity)
and additional ones (e.g., chord). We also define a time
resolution as the 12 steps per quarter note.

1) Event-based Representation: We use the events in Ta-
ble I based on REMI+ [13] representation. The variable k
associated with Bar, Position, Track, or Pitch tokens takes
an integer within the range. In contrast, k associated with
the Duration token takes one of 27 integers specified by the
following expression as follows:

k = {1, ..., 12}
∪ {12 + 3i | i ∈ [1, 4]} ∪ {12 + 4i | i ∈ [1, 3]}
∪ {24 + 6i | i ∈ [1, 4]} ∪ {48 + 12i | i ∈ [1, 4]}. (1)

Durations are represented as follows: up to quarter notes for
time step lengths; up to half notes for sixteenth notes and
triplets; up to whole notes for eighth notes; and up to double
whole notes for quarter notes. Unlike REMI+, time-signature,
tempo, chord, and velocity events are omitted. In this study,
we use a total of 1 + 1 + 16 + 8 + 3 + 128 + 27 = 184 types
of tokens.
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TABLE I
TOKEN LIST IN EVENT-BASED REPRESENTATION.

Event Type Description Value Range
BOS Beginning of a song
EOS End of a song
Bar:k Start of the kth bar 1 ≤ k ≤ 16

Position:k Position of the note in the bar, k 0 ≤ k ≤ 47
Track:k Track number of the note, k 1 ≤ k ≤ 3
Pitch:k Pitch of the note, k 0 ≤ k ≤ 127

Duration:k Duration of the note, k 1 ≤ k ≤ 96

The top of Fig. 1 shows an example of the event-based
representation. The token sequence begins with a BOS token
and ends with an EOS token. Musical notes are sorted in an
ascending order of time and pitch to form a series of four
tokens: Position, Track, Pitch, and Duration, which are then
added to the token sequence in order.

We define the absolute index sequence I = {I1, ..., IL}, the
absolute time sequence T = {T1, ..., TL}, and the absolute
pitch sequence P = {P1, ..., PL} in Algorithm 1, which are
used to compute the relativity in Sections III-B, III-C, and
III-D. BarRes represents the timesteps per bar.

2) Note-based Representation: This representation is de-
fined as in the Multitrack Music Transformer [6], where each
token (note) is expressed as a tuple of 6 variables:

xi = {xmeta
i , xbar

i , xposition
i , xp

i , x
duration
i , xtrack

i }.

Each variable corresponds to Meta, Bar, Position, Track, Pitch,
and Duration tokens. Except for Meta and Bar tokens, the def-
initions are the same as those in the event-based representation
(see Section III-A1).

Meta token indicates the beginning of a song (0), a note (1),
or the end of a song (2). Bar token represents the bar including
a note, with a value range from 1 to 16, consistent with the
event-based representation. During encoding, each variable is
separately transformed by linear transformation layers, and
their sum represents the latent representation of the token.
Conversely, during decoding, the latent representation of the
output is decoded into each variable separately by six types of
linear transformation layers.

The top of Fig. 1 also shows an example of the note-based
representation. After converting all musical notes into tokens,
tokens are sorted based on time and pitch. A token representing
the start of the piece (Meta:0) is added at the beginning, and
a token representing the end of the piece (Meta:2) is added
at the end of the sorted token sequence. We also define the
absolute index, time, and pitch sequences for the note-based
representation as follows.

I = {1, ..., L}, (2)

T = {xbar
i × BarRes + xposition

i }Li=1, (3)

P = {xpitch
i }Li=1. (4)

B. Relative Attention

In general, the self-attention layer (Attn) transforms a feature
sequence X ≜ {X1, ..., XL} ∈ RL×D to another feature

Algorithm 1 Event-based I,T,P

1: cbar← None #current bar
2: cpos← None #current position
3: cpit← None #current pitch
4: I, T, P ← [], [], []
5: for idx, event ∈ enumerate(sequence) do
6: if type of event is Bar then
7: cbar← Bar value of event
8: end if
9: if type of event is Position then

10: cpos← Position value of event
11: end if
12: if type of event is Pitch then
13: cpit← Pitch value of event
14: end if
15: I.append(idx)
16: T.append(cbar× BarRes + cpos)
17: P.append(cpit)
18: end for

sequence Y ≜ {Y1, . . . , YL} ∈ RL×D while keeping the
length L and the dimension D. Fist, X is transformed into
queries Q = XWQ, keys K = XWK , and values V = XWV ,
where WQ,WK ,WV ∈ RD×Dh are learnable parameters.
Here, Dh represents the dimension in an attention head. The
original transformer uses the multi-head attention mechanism
for capturing the multifaceted relationships between different
positions. For simplicity, we here focus on a single attention
head. The output of the self-attention layer is given by

Y = Softmax
(
QK⊤
√
Dh

)
V ≜ Attn(X). (5)

On the other hand, relative attention [11], [14] incorporates
positional embeddings derived from relative index distances
between tokens into the attention mechanism.

Ridx = LPE(I⊤ · 1− 1⊤ · I) ∈ RX×X , (6)

Sidx
rel = QR⊤

idx ∈ RX×X , (7)

Y = Softmax
(
QK⊤ + αSidx

rel√
Dh

)
V ≜ RelAttn(X), (8)

where 1 is an all-one vector of length L. The relative index
matrix I⊤ · 1− 1⊤ · I is embedded using learnable positional
encoding LPE. Subsequently, the relative index logit Sidx

rel ,
computed by the product of the embedding Ridx and the query
Q, are added to QK⊤. We refer to relative attention as RelAttn.

C. RIPO Attention

RIPO attention incorporates the relative time and pitch
distances between notes in original music as well as the relative
index distances between tokens.

Rt = SPE(T⊤·1− 1⊤·T) ∈ RX×X , (9)

Rp = SPE(P⊤·1− 1⊤·P) ∈ RX×X , (10)
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St
rel = QR⊤

t ∈ RX×X , (11)

Sp
rel = QR⊤

p ∈ RX×X , (12)

Srel = Sidx
rel + St

rel + Sp
rel ∈ RX×X , (13)

Y = Softmax
(
QK⊤ + αSrel√

Dh

)
V ≜ RIPOAttn(X). (14)

The relative time matrix T⊤·1− 1
⊤·T and the relative pitch

matrix P⊤·1−1⊤·P are embedded with the sinusoidal positional
encoding SPE. The embeddings Rt and Rp are then utilized
to compute the relative time logit St

rel and the relative pitch
logit Sp

rel by performing the matrix product with the query Q.
These logits are subsequently added to QK⊤.

D. Circular Relative Attention

Leveraging the inherent cyclicity in time and pitch, the pro-
posed CirRelAttn mechanism effectively models the repetitive
and cyclic structures that weren’t captured by RIPO attention.
Initially, we decompose the relative time distance matrix into
bar units and their remainders, and then separately embed these
matrices using learnable positional encodings.

Rbar = LPE((T⊤·1− 1⊤·T) //BarRes), (15)

Rposition = LPE((T⊤·1− 1⊤·T)%BarRes). (16)

Similarly, we decompose relative pitch distance into octave
units and their reminders and separately embed these matrices
using learnable positional encoding.

Roctave = LPE((P⊤·1− 1⊤·P) // 12), (17)

Rsemitone = LPE(P⊤·1− 1⊤·P)%12). (18)

Here, the reason for not using sinusoidal positional encoding is
that proximity in relative distance does not necessarily imply a
strong relationship. For example, as pointed out in [15], similar
musical structures tend to appear in specific previous bars (1, 2,
4, 8, 16, ... bars). Moreover, the harmonic relationship between
the pitches is intricate, resulting in each interval having a
unique resonance. We utilize learnable positional encoding
LPE to capture the features corresponding to these relative
distances separately. The relative time and pitch logits from
the aforementioned embeddings are represented by one of the
following equations.{

St
rel = Q (Rbar + Rposition)

⊤
,

Sp
rel = Q (Roctave + Rsemitone)

⊤
,

(19){
St
rel = Q (Rbar ⊙ Rposition)

⊤
,

Sp
rel = Q (Roctave ⊙ Rsemitone)

⊤
.

(20)

Here, we define equation (19) as CirRelAttn-S and equation
(20) as CirRelAttn-H.

IV. EVALUATION

In this section, we describe the objective and subjective
evaluation results from the continuous generation experiments
and analyze the effectiveness of the proposed method.

A. Experimental Setup
We used POP909 dataset [8], which contains popular music

with a wide variety of repetitive structures. We excluded
songs with inconsistent beat annotations and split the available
896 songs into 10% for validation, 10% for testing, and the
remaining 80% for training. We extracted sequences of 16
measures from each song with a stride of 1 measure and used
only sequences with 4/4 time signature. Finally, we obtained
4,749 sequences for validation, 4,137 for testing, and 35,452
for training. We quantized the data with a resolution of 12 steps
per quarter note. We used MusPy [16] for data pre-processing.
For training, we performed data augmentation by randomly
transposing each data between -6 to +5 semitones.

For the proposed method, we used a decoder-only Trans-
former based on a self-attention mechanism with 4 layers, 8
heads, a hidden dimension of 256, and a dropout rate of 0.2.
For comparison, we tested the vanilla attention mechanism
(Attn) [1], the relative attention mechanism (RelAttn) [11],
and the RIPO attention mechanism (RIPOAttn) [7], where
the same architecture was used as the proposed method. We
conducted validation every 1,000 steps and terminated training
after 200,000 steps or if no improvement in loss was observed
after 20 validation checks. We fixed the batch size at 8, with
a warm-up step count of 10,000 and a peak learning rate of
2e-5. We set the hyperparameters to α = 0.1 and γ = 0.2,
respectively.

B. Objective Evaluation
We evaluated how accurately the model can continuously

generate musical pieces that resemble the test data. The model
was given the first 15 bars of each test dataset and generated
a continuation for 1 bar. We calculated the similarity between
the generated musical pieces and the ground truth using the
following five objective metrics.

• NoteF1 (F1note) or OnsetF1 [17] measures the accuracy
of the generated pieces against the ground truth on a per-
note basis using the F1 score. A true positive is identified
when the onset timing, pitch, and track of the generated
note all match the note in the ground truth.

• PianorollF1 (F1pr) or FrameF1 [17] measures the accu-
racy of the generated pieces against the ground truth on
the piano roll representation by computing F1 score by
evaluating each time step and pitch class.

• Pitch Range Similarity (PRS) measures the similarity of
the pitch range within a single bar between the generated
pieces and the ground truth.

PRS = 1− |PRgen − PRgt|
128

, (21)

where PRgen and PRgt represent the pitch range (the
difference between the highest and lowest pitches) of the
generated pieces and the ground truth, respectively.

• Chroma Similarity (CS) [18] is the cosine similarity
between the chroma vectors [19] of the generated pieces
and the ground truth. The chroma vector [19] is a 12-
dimensional vector representing the number of onsets
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TABLE II
OBJECTIVE EVALUATION RESULTS.

Methods Objective Evaluation
No. Rep. Attn Type params time (ms/note) Loss F1note F1pr ND GS CS PRS

1

event

Attn [1] 4.32M 8.46 0.979 0.174 0.239 0.908 0.846 0.620 0.955
2 RelAttn [11] 4.84M 9.73 0.937 0.218 0.291 0.903 0.848 0.650 0.955
3 RIPOAttn [7] 4.85M 18.3 0.904 0.233 0.305 0.908 0.855 0.660 0.956
4 CirRelAttn-S 4.88M 22.5 0.876 0.268 0.341 0.909 0.855 0.673 0.957
5 CirRelAttn-H 4.88M 20.8 0.856 0.293 0.361 0.914 0.858 0.685 0.958

6

note

Attn [1] 3.53M 4.29 4.42 0.188 0.267 0.873 0.784 0.619 0.941
7 RelAttn [11] 3.66M 5.79 4.38 0.186 0.271 0.880 0.798 0.628 0.946
8 RIPOAttn [7] 3.67M 5.93 4.40 0.180 0.257 0.878 0.786 0.612 0.942
9 CirRelAttn-S 3.70M 8.58 4.37 0.192 0.273 0.877 0.785 0.623 0.943
10 CirRelAttn-H 3.70M 6.54 4.29 0.215 0.294 0.881 0.787 0.632 0.944

Fig. 3. Musical pieces generated by the event-based RelAttn, RIPOAttn, and CirRelAttn-H. Given the first four bars, each model generates a continuation for
the next twelve bars. While the RelAttn and RIPOAttn generate entirely new phrases, CirRelAttn generates phrases that resemble the initial input, resulting in
more coherent music. The areas shaded in red indicate a repetitive structure.

TABLE III
SUBJECTIVE EVALUATION RESULTS.

Methods Subjective Evaluation
Rep. Attn Type Coherence Musicality Overall

Ground Truth 3.89 4.05 3.89

event
RelAttn [11] 3.05 2.84 2.89
RIPOAttn [7] 2.95 3.05 2.89
CirRelAttn-H 4.21 3.32 3.58

note
RelAttn [11] 2.32 2.42 2.26
RIPOAttn [7] 2.63 2.58 2.68
CirRelAttn-H 2.26 2.47 2.42

for each of the 12 pitch classes (C, C#, ..., B) within
a specific time range. In this experiment, the cosine
similarity is calculated for each half-bar (24 time steps)
and the average is computed.

• Grooving Similarity (GS) [18], [20] is the cosine similar-
ity between the grooving vectors of the generated music
and the ground truth. Each grooving vector represents the
number of onsets at each time step within a measure and
is a 48-dimensional vector in this experiment.

Table II shows the objective evaluation results on the contin-
uous generation task. Our methods (No. 5, 10) demonstrated
superior performance to the baselines on most objective met-
rics within both event-based and note-based representations.
In other words, we confirmed that the proposed methods
generate musical pieces that more closely resemble the test
data compared to the baselines.

C. Subjective Evaluation
We conducted a listening test to evaluate the quality of

musical pieces generated by our method. We compared the
generated music pieces by six models (event-based RelAttn,
RIPOAttn, and CirRelAttn and note-based RelAttn, RIPOAttn,
and CirRelAttn) and the ground truth. We provided only the
initial four bars to each model, and the model then generated
the continuation for twelve bars. Each evaluator listened to
seven pieces and scored them based on three criteria: coher-
ence, musicality, and overall quality, using a scale from 1 to
5. We recruited 30 evaluators to evaluate 10 sets of musical
pieces, with each set scored by three evaluators.

Table III shows the result of the listening test. Our method
with the event-based representation (CirRelAttn-H) outper-
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formed other methods, particularly in coherence. We found
that CirRelAttn-H with the event-based representation tended
to generate repetitive structures by analyzing the generated
musical pieces. Fig. 3 shows an example of musical pieces gen-
erated by RelAttn, RIPOAttn, and CirRelAttn. While RelAttn
and RIPOAttn constantly generated new phrases, CirRelAttn
repeatedly generated the phrase given in the first four bars. We
hypothesized that music containing a high amount of repetitive
structures received particularly high ratings for coherence from
human evaluators. The proposed attention machanism enabled
the model to learn the distinctive repetitive structure of music
well and generate consistent music.

V. CONCLUSION

This paper presented a novel approach that decomposes the
relative time and pitch distances based on bar and octave
units and subsequently integrates these components into the
self-attention mechanism via learnable positional encodings.
Objective evaluation demonstrated that our method effectively
learns music structures and outperforms previous methods in
a music continuation task. We also confirmed that our method
generates coherent music that contains repetitive structures
through a listening test.
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