
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

LDMSE: Low Computational Cost Generative
Diffusion Model for Speech Enhancement

Yuki Nishi∗,Koichi Shinoda† and Koji Iwano‡
∗ Tokyo Institute of Technology, Tokyo

E-mail: y-nishi@ks.c.titech.ac.jp
† Tokyo Institute of Technology, Tokyo

E-mail: shinoda@c.titech.ac.jp
‡ Tokyo City University, Tokyo

E-mail: iwano@tcu.ac.jp

Abstract—Recently, a generative model called diffusion model
has attracted attention. Compared to GANs, it can be trained
stably but has a high computational cost in the generation stage.
This paper proposes a method called Low computational cost
Generative Diffusion Model for Speech Enhancement (LDMSE).
It reduces its computational cost with comparable quality by
compressing speech signals to a latent space using an autoencoder
and removing noise in the latent space using the diffusion model.
In our evaluation using VOICBANK-DEMAND and WSJ0-
CHiME3 datasets, the proposed method reduced the generation
time by more than 35% without any degradation in speech
quality.

I. INTRODUCTION

Speech enhancement technology for noise reduction is
needed in various situations. These include speech assistance
with hearing aids, noise reduction in speech recognition, and
processing for speech-containing content on the Web. In recent
years, neural network-based technologies have been widely
used to enhance speech with higher quality. Among neural
network (NN) techniques, the Diffusion Model has attracted
much attention because of its high quality in generation tasks
and stable training. It has also been studied in the field of
speech enhancement. However, this method has a drawback in
that it is computationally expensive due to the need to pass data
through the network repeatedly during the generation phase.

In this study, we propose a method called Low computa-
tional cost generative Diffusion Model for Speech Enhance-
ment(LDMSE), aiming to reduce the computational cost of
the generation stage in the diffusion model without sacrificing
enhancement quality. The input speech data is dimensionally
reduced into a latent space using an Encoder and Decoder.
Then, the computational cost of each generation step is reduced
accordingly. In our evaluation, we proved that LDMSE reduces
the total computational cost by more than 35% without any
degradation in speech quality.

II. PREVIOUS STUDIES

A. Speech Enhancement

Speech enhancement has been utilized for various situations.
In this study, we estimate clean speech data x given noisy
speech y = x+ n, a mixture of environmental noise n and x.

Additionally, we only consider single-channel data. Recently,
NN-based methods have achieved higher quality than those
without using NN, such as the method of suppressing certain
frequency regions [1] and the method of modeling human
voices with hidden Markov models [2]. Some methods directly
estimate a mask in the frequency domain [3], [4]. For exam-
ple, Kingma et al. [5] utilize Variational Autoencoder (VAE)
for this purpose. Moreover, Generative Adversarial Networks
(GAN) have achieved high quality in speech enhancement
[6]. For instance, MetricGAN+ [7] applies GAN to speech
enhancement. However, GAN is unstable in its training. The
following diffusion model solves this problem and achieves
better quality.

B. Diffusion Model

One of the most popular generative models is the diffusion
model. It models the diffusion process of the target data to
which Gaussian noise is added and regenerates the original
clean data from the target noisy data reversely. Diffusion
models are divided into two categories: score-independent and
score-based diffusion models.

The score-independent diffusion model, the so-called De-
noising Diffusion Probabilistic Model (DDPM) [8], estimates
a Gaussian noise added to the input data. It first defines the
noise addition formula with NDDPM steps. The transition of
data from n to n+1 (0 ≤ n ≤ NDDPM− 1), which we call it
forward direction, is defined as xn+1 =

√
1− βnxn +

√
βnz,

where βn is a hyperparameter and z is sampled from normal
Gaussian distribution. The transition from xn+1 to xn is also
computed explicitly, which is the same as the inference process
for, for example, generating images and sounds.

The score-based diffusion model [9] is formulated based
on the stochastic differential equation (SDE). First, Gaussian
noise diffusion is formulated as:

dxt = f(xt)dt+ g(t)w(t), 0 ≤ t ≤ T (1)

where xt is the state of the data at t and x0 corresponds to
the clean data, and w(t) is a Wiener process. The functions
f, g are defined in various ways depending on the experimental



setup. The SDE in the reverse direction is formulated as [9],
[10]:

dxt =
[
−f(xt) + g(t)2∇xt log pt(xt)

]
dt+ g(t)dw̄(t) (2)

where 0 ≤ t ≤ T and ∇xt
log pt(xt) is called a score, pt(xt)

is the probability distribution of xt, and w̄(t) is the standard
Wiener process when t is traced backward from T to 0. The
score is computed from f and g.

Several score-based diffusion models have been proposed
to obtain x0 by simulating backward transitions from noisy
data xT [10]. The simplest method is Euler-Maruyama method
[11], which discretizes the range from 0 to T into N steps.
Another high-quality method is the Predictor-Corrector (PC)
samplers [9] where the process is divided into a Predictor and
a Corrector. The Predictor solves the SDE, and the Corrector
refines it to achieve high quality.

C. Reduction of Computational Cost of Diffusion Model

In the diffusion model, the process of gradually removing
noise by passing the data through NN multiple times (e.g.,
30 times for SGMSE+ [12], which is the baseline for this
study) during the generation stage during the generation stage
results in high computational cost. Several studies solve this
problem by reducing the number of steps in the generation
phase. As for DDPM, Denoising Diffusion Implicit Models
(DDIM) [13] generalizes the definition formula of the diffusion
process so that the inverse process is designed with arbitrary
step intervals.

This approach that reduces the number of steps cannot be
applied to the score-based diffusion model because its reverse
process simulates SDEs during inference. Instead, Fast sampler
[14] trains an NN sampler, which is applied to various diffu-
sion models. Denoising MCMC (DMCMC) [15] introduces a
relatively small NN that estimates the noise magnitude at each
step. These two methods can generate with a small number of
steps, though they slightly degrade the quality.

D. Speech Enhancement with Diffusion Model

Several studies have applied the diffusion model to speech
enhancement. However, the widely used DDPM [8] removes
only Gaussian noise, which limits its applicability to speech
enhancement tasks where the noise types are various, such as
the crowds at train stations and birdsong [16]. CDiffuSE [17]
addresses this limitation by incorporating not only Gaussian
noise but also non-Gaussian noise (e.g., environmental noise)
in the forward step.

A study of speech enhancement using the score-based
diffusion model is SGMSE+ [12], which is used as the baseline
in this study. In this method, the functions f and g in Eq. 2
are defined as

f(xt, y) = γ(y − xt) (3)

g(t) = σmin (σr)
t
√

2 log (σr) (4)
σr = σmax/σmin. (5)

Then, the score in Eq.2 can be derived as follows.

∇xt
log pt(xt) = −xt − µ(x0, y, t)

σ(t)2
(6)

µ(x0, y, t) = e−γtx0 + (1− e−γty) (7)

σ(t)2 =
σ2
min

(
σ2t
r − e−2γt

)
log (σr)

γ + log(σr)
, (8)

where y is the sound mixed with speech and environmental
noise, σmax and σmin are hyperparameters set to 0.5 and 0.05
respectively. γ is a hyperparameter to control the strength of
the transition (”hardness”) from x0 to y and is set to 1.5. By
defining the hyperparameters in this way, we obtain

p0t(xt|x0, y) = NC(xt;µ(x0, y, t), σ(t)
2I) (9)

where the center of xt asymptotically moves toward y as t
increases. See [12] and [18] for a more detailed explanation
of these formulas.

This SGMSE+ [12] achieves higher quality than CDiffuSE
[17]. Authors in SGMSE+ [12] suggest its reason is the
architecture and fine hyperparameter tuning.

E. Diffusion model with latent space

The term “latent space” in AutoEncoder [19] and VAE
[5] refers to the space formed by the Encoder’s mapping of
data. Latent Diffusion Model (LDM) [20] is a diffusion model
that applies the diffusion process to the latent space formed
by a VAE for image generation. It assumes that the image
generation process is divided into Perceptual stage with a low
compression ratio and a Semantic stage with a high compres-
sion ratio. The dimension of the latent space is compressed
in the spatial direction and expanded in the channel direction.
The total dimension becomes smaller because the reduction
rate of the spatial dimension is greater than the expansion rate
of the channel dimension.

AudioLDM [21] uses LDM to process audio data. This
model is designed for Text To Audio (TTA) tasks. In this
method, the diffusion model is executed in the latent space
defined by VAE. It achieved State-Of-Art in the TTA. The
architecture of Encoder and Decoder used in AudioLDM is
shown in Fig.1. Another study [22] utilizes LDM for text-to-
speech tasks and achieved state-of-the-art performance. LSGM
[23] combines a score-based diffusion model with VAE for
image generation tasks. Our study differs from these studies in
that it is developed for speech enhancement, in which speech
quality is directly evaluated by some metrics such as PESQ
and ESTOI.

III. LDMSE

A. Use of Encoder-Decoder

We propose a method to reduce the computational cost of the
diffusion model using a latent space with a smaller dimension
than that of the original input data. We call this method Low
computational cost Generative Diffusion Model for Speech
Enhancement (LDMSE). This method has an encoder before
the diffusion process and a decoder after it (hereafter, these two
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Fig. 1. Encoder-Decoder Architecture. Resnet Block is the same as
AudioLDM [21]. Blocks with dashed lines mean they have been removed.
Dashed rectangles denote processing groups that are executed N times.
The Up/Down Sample layers in parentheses with dashed rectangles are
not executed in the final N times loop.

Fig. 2. Proposed process when ξ = 1/4

are abbreviated as EncDec). If the dimensionality of the data
handled in the inverse diffusion is smaller, the computational
cost will be reduced, which is the purpose of the processing
process.

Let ξ represent the compression rate. Fig. 2 shows the
proposed process flow when ξ is 1/4. Also, F and T represent
the number of frequency and time dimensions after STFT,
respectively. The theoretical computational cost required for
reverse diffusion is ξ (< 1) times lower than the Baseline.

In this study, EncDec is not a VAE but an ordinary Au-
toEncoder. We applied a tanh function to the Encoder’s output
because we found empirically that the variation of the data in
the latent space would be very different depending on the seed
value at the time of training if we did not do this.

The training process of LDMSE is divided into two phases.
The first phase is to train an encoder to project data into the
latent space and a decoder to restore it from the latent space to
the real space. Only clean speech data were used for training.
And loss function was L2 loss. The second stage is to fix the
parameters of the EncDec and train the Diffusion Model to
execute the inverse diffusion for the inference.

The EncDec was trained with 100 epochs, 8 minibatch size,
and the Diffusion part was done with 300 epochs, 16 minibatch
size. The learning rate in both trainings is 8.0× 10−6.

B. Architecture

Fig. 3. Model architecture for the Diffusion part. The dimension of the input
signal is 4×F ×T . The numbers above or below the rectangles representing
the Residual Blocks indicate the channel dimension. Four on the axis of the
channel in the input dimension means the real and imaginary parts of the clean
and noisy data, respectively. Its details are described in [12].

1) Diffusion part: We adopt the same architecture NCSN++
that is proposed in SGMSE+ [12] (Fig. 3). It has a similar
structure to U-Net [24]. The components in Fig. 3, Residual
Block, Uplayer, Downlayer, Bottlenecklayer, ProgUp, Prog-
Down, and Bottlenecklayer, are the same as used in NCSN++.
The input and output signals are almost the same as the signals
processed by STFT, but with scaling described in Sec. 3.2 in
[18].

Depending on ξ, dimension-related issues may arise during
the processing of NCSN++. For example, if ξ = 1/8, the
dimension of the input data of the diffusion model becomes
F/8 × T , where F × T is the dimension before processing
by the Encoder. Since F = 256 and N = 6 in the original
SGMSE+, the dimension of the data processed in the last
iteration of the iterative structure on the left side in the
Fig. 3 becomes (256/8)/(26) < 1, indicating that the vector
dimension becomes zero. In such cases, we refrain from further
dimension reduction.

2) AutoEncoder part: The architecture of the EncDec mod-
ule is adapted from AudioLDM [21]. It is shown in Fig. 1.
However, the EncDec architecture utilized in LDMSE incor-
porates three modifications compared to AudioLDM. First,
there are alterations in the architecture within the EncDec
module itself. The middle block and normalization layer used
in AudioLDM outside the Resnet block loop have been re-
moved. The middle block calculates Attention for the time
and frequency dimensions. This is because the computational
cost of this block was very high when we used STFT as
input, whereas AudioLDM used a mel-spectrogram. In our
preliminary experiments, we found that EncDec’s accuracy
without the normalization layer was better.

Second, UpSample and DownSample are applied only to
the frequency dimension and not to the time dimension.
NCSN++ used in the diffusion process also compresses the
time dimension. In the case of ξ = 1/4, the time dimension is
compressed up to 1/256 at minimum. For example, if we input
data with a time dimension of 65, the time dimension becomes
32 after the first compression, as shown in Fig. 3, and 64 after
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the restoration. Then, for ξ = 1/4, the time dimension in the
output is a multiple of 256, corresponding to 2 seconds. This
is too long to have a desirable time resolution in the output.

Third, the number of loops in the ResNet Block varies
with ξ. For ξ = 1/2, 1/4, 1/8, N = 2, 3, 4 in Fig. 1. This
is to make this architecture compatible with multiple ξ. This
architecture consists of a stack of layers, each of which is a
set of Down/Up Sample, Resnet Block, and Conv2D in the
frequency dimension. The data is down/up sampled with each
layer. Therefore, to support multiple ξ, the number of layers
is changed.

IV. EXPERIMENT

A. Dataset

For our evaluation, we employ two datasets: VOICEBANK-
DEMAND and WSJ0-CHiME3.

VOICEBANK-DEMAND serves as a benchmark, aligning
with previous studies of speech enhancement. This is a mixture
of VOICEBANK [25] and DEMAND [26]. VOICEBANK has
two sets, one with 28 speakers and the other with 56 speakers,
of which 28 speakers are selected. Each speaker has about 400
utterances. There are a total of 11572 utterances for training
and 824 for evaluation. In the training data, each noise is mixed
with one noise per utterance, with the signal-to-noise ratios
of 15 dB, 10 dB, 5 dB, and 0 dB for the training data and
17.5 dB, 12.5 dB, 7.5 dB, and 2.5 dB for the evaluation data,
respectively. Each utterance is used exactly once.

WSJ0-CHiME3 is utilized for comparison to SGMSE+.
This is a mixture of WSJ0 [27], comprising readings from
the Wall Street Journal, and CHiME3 [28], prepared in the
3rd CHiME Challenge, a speech recognition competition and
hereafter abbreviated as WSJ-C3. In WSJ0, the subset si tr s
with a total of 12,776 utterances was used for training, and
a subset of si dt 05 with 1,026 utterances was used for the
valid split. The signal-to-noise ratios are uniformly distributed
from 0 dB to 20 dB. Each utterance is used only once. WSJ0-
CHiME3 is divided into train, valid, and test sets. This paper
presents the results of the evaluation of the Valication set.

We use the same consistent datasets for training and evalu-
ation, not changing the dataset in these two stages.

B. Metrics

The Baseline for this research is SGMSE+ [12]. We mainly
compare the quality with it. For the indicators of how close
the emphasized speech is to the clean speech, we measured
PESQ [29], ESTOI [30], SI-SDR [31]. All of these mean that
the higher the value, the better the quality.

• PESQ [29]: The Perceptual Evaluation of Speech Quality.
recommended by ITU-T P. 862 in 2001. The value range
is from 1.0 to 4.5.

• ESTOI [30]: The Extended Short-Time Objective. The
Extended Short-Time Objective Intelligibility. It takes a
value range from 0.0 to 1.0.

• SI-SDR [31]: Scale-Invariant Signal-to-Distortion Ratio.
It is a measure of sound distortion calculated in a way that
is invariant to the volume of the two data being compared.

Fig. 4. Line graph for computational time and PESQ. ”Time” indicates the
average computational time required for speech enhancement per utterance,
including the processing time of EncDec. Fractions represent the value of ξ.

We also measure the time that the GPU uses for generation. We
use torch.cuda.Event for recording time. The GPU we used for
generation is one RTX 3090. The CPU is Intel(R) Core(TM)
i7-10700 CPU @ 2.90GHz. The RAM has 32GB.

C. Results

TABLE I
RESULTS ON VB-DMD. ”TIME” IN THE TABLE INDICATES THE AVERAGE

TIME REQUIRED FOR SPEECH ENHANCEMENT PER UTTERANCE,
INCLUDING THE PROCESSING TIME OF ENCDEC. ξ = 1/2, 1/4, 1/8 ARE

PROPOSED METHOD, LDMSE. VALUES AFTER ± MEAN STANDARD
DEVIATION. MGAN+ MEANS METRICGAN+. THE RESULTS OF METRICS

AND GENERATION TIME IN MGAN+ AND CDIFFUSE ARE FROM OUR
PRELIMINARY EXPERIMENT BECAUSE [12] DOES NOT SHOW THE

STANDARD DEVIATION OF RESULTS.

PESQ↑ ESTOI↑ SI-SDR↑ Time[s]
SGMSE+ 2.89±0.60 0.86±0.10 16.8±3.4 3.77
ξ = 1/2 2.89±0.63 0.86±0.10 17.2±3.0 2.70
ξ = 1/4 2.84±0.65 0.86±0.10 17.3±2.9 2.34
ξ = 1/8 2.47±0.62 0.81±0.12 14.8±3.3 1.63
CDiffuSE 2.53±0.57 0.77±0.11 12.4±2.7 0.033
MGAN+ 3.15±0.57 0.82±0.12 8.0±3.2 0.0012

TABLE II
RESULTS ON WSJ-C3. THE MEANINGS OF EACH VALUE AND WORD ARE

THE SAME AS IN VB-DMD. THE RESULTS OF METRICS IN
MGAN+(=METRICGAN+) AND CDIFFUSE ARE REPORTED VALUE IN

[12].

PESQ↑ ESTOI↑ SI-SDR↑ Time[s]
SGMSE+ 2.99±0.55 0.91±0.07 18.2±4.3 7.43
ξ = 1/2 2.99±0.55 0.91±0.06 17.6±4.0 4.76
ξ = 1/4 2.77±0.57 0.90±0.07 17.2±3.5 3.57
ξ = 1/8 1.99±0.41 0.84±0.09 12.4±3.6 3.25
CDiffuSE 2.27±0.51 0.83±0.09 9.2±2.3 0.099
MGAN+ 3.03±0.45 0.88±0.08 10.5±4.5 0.0024

Fig. 4 shows the comparison of our proposed methods,
LDMSE, with different ξ values. For ξ = 1/2, our method
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succeeded in reducing the time without losing quality in VB-
DMD, and in ξ = 1/4 with WSJ-C3 it did not lose quality
in the ξ = 1/2 case, nor did it lose much. In these ξ,
the effectiveness of the proposed method was confirmed. For
ξ = 1/8, the quality has been noticeably reduced for both data
sets. This may be because the degree of compression was too
large, and thus, the necessary dimension in the real space was
not obtained in the latent space.

Table I and II show the detailed results of the quality
evaluation of speech enhancement for VB-DMD and WSJ-
C3, respectively. The PESQ and Time values in Table I
and II are the same as the values in Fig. 4. Results of
MetricGAN+ and CDiffuSE are shown for comparison. With
SI-SDR and ESTOI, up to ξ = 1/4, the speedup was achieved
without losing quality. The bold values in Table I, II are those
considered to have been particularly successful. Compared
to the other methods, LDMSE is slower than CDiffuSE in
generation time but better in quality. Compared to CDiffuSE,
LDMSE outperforms in quality in SI-SDR and ESTOI, while
MetricGAN+ outperforms in quality in PESQ. This may be
because the objective of MetricGAN+ during training is to
maximize PESQ. In all quality metrics, there is no significant
difference in t-test at a 5% significance level.

V. CONCLUSION

We have proposed a method called LDMSE to reduce the
computational cost of diffusion model based speech enhance-
ment, it is shown that the quality of the diffusion model with
SGMSE+ can be maintained while reducing the computational
cost by using the latent space. In particular, if it is ξ = 1/4 in
VB-DMD and ξ = 1/2 in WSJ-C3 we can achieve a speedup
of more than 35% without quality loss.

In the future, we would like to aim to use VAE for EncDec
[20], [21]. Additionally, we would like to investigate the degree
of data dispersion in latent space. Finally, we want to examine
how we can apply the proposed method to other diffusion
model-based denoising methods, such as CDiffuSE, MGAN+,
and complex number-based frameworks.
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