
Continual Learning with Self-Organizing Maps: A
Novel Group-Based Unsupervised Sequential

Training Approach
Gaurav Hirani¹*, Kevin I-Kai Wang² and Waleed Abdulla³

¹²³The University of Auckland, Auckland, New Zealand
¹E-mail: ghir325@aucklanduni.ac.nz Tel: +64 22 307 2932
²E-mail: kevin.wang@auckland.ac.nz Tel: +64 (9) 373 7599 Ext.89226
³E-mail: w.abdulla@auckland.ac.nz Tel: +64 (9) 373 7599 Ext.88969

Abstract – Continual learning is essential for intelligent
systems to thrive. While deep learning models based on
Convolutional Neural Networks are robust, they can be
complex and resource-intensive, requiring a long and
computationally intensive training phase due to Back-
propagation (BP). On the other hand, unsupervised methods
are favored for their lightweight, speed, and ease of
management, making them ideal for ongoing learning. Self-
organizing maps (SOMs) have gained attention in computer
vision over the past decade due to their excellent feature
extraction abilities and transparency. However, SOMs
encounter challenges in learning, such as having a fixed map
size that limits new feature accommodation and the risk of
interference when retraining a pre-trained map with the
latest data. Although some studies have explored using
SOMs to tackle these issues, obstacles like catastrophic
forgetting and lifelong learning hurdles remain prevalent. To
combat forgetting issues, we propose an approach called
learning by grouping. In this method, each group generates
a trained map stored in memory before the model is reset
and trained on the group to create another map. This
sequential process facilitates learning while preserving
previously acquired knowledge without disruptions. The
suggested approach has been tried out on MNIST digit,
Fashion MNIST, and CIFAR 10 datasets. The proposed
method demonstrates final accuracy improvement of 60-
70% across all three datasets when compared to traditional
SOM, indicating the effectiveness of grouping in overcoming
the limitations of SOM-based continual learning methods.

I. INTRODUCTION

Convolutional Neural Network (CNN)-based deep
architectures have achieved significant success in the field of
computer vision, demonstrating exceptional efficiency across
various applications[1] [2]. These deep learning (DL) models are
typically trained on labeled data for all available classes or target
groups. When new data from a previously unseen class is
introduced, the existing trained model cannot adapt without
requiring a complete retraining of the entire architecture. The
capability to continuously learn over time by incorporating new
knowledge while retaining previously acquired experiences is
known as continual or lifelong learning [3]. Unlike humans, who
seamlessly integrate new information while preserving old

knowledge, traditional algorithms face challenges in this area.
The complexity and large size of DL architectures result in
substantial time and computational power requirements for
retraining.

To address the challenge of making deep architectures
adaptive, significant approaches have been proposed for
continual learning (CL) [4]. Models designed with CL
functionality to prevent forgetting old tasks are primarily
categorized into three types: retraining with regularization,
training with network expansion, and selective network
retraining and expansion. [5] [6]. Introducing new sub-networks
prevent catastrophic forgetting, the parameters learned for
existing tasks remain unchanged, while new parameters are
added and trained [7]. Combining both concepts in a balanced
manner constitutes the third category of architecture. Additional
categories include replay-based approaches, optimization-based
approaches, representation-based approaches, and memory-
based methods [4] [8]. These advancements have predominantly
been applied to supervised models, particularly deep neural
networks. DL models often suffer from limited tractability,
making their outcomes difficult to interpret, which poses a
significant bottleneck to major improvements. To transparently
study the effects of adaptive learning, a few studies have focused
on unsupervised approaches. Although these models are not as
efficient as their supervised counterparts for large datasets, they
are lightweight, tractable, and faster.

Self-organizing maps (SOM) are an unsupervised clustering
technique widely used for dimensionality reduction, feature
extraction, and clustering in image datasets. Several key studies
have attempted to implement SOM for continual learning. Two
SOM-based models were proposed for incremental learning: (i)
a modified self-organizing map (GeppNet) and (ii) a SOM
extended with a short-term memory (GeppNet+STM) [3][9]. In
GeppNet, task-relevant feedback from a regression layer
determines whether learning in the self-organizing hidden layer
should occur. In GeppNet+STM, the STM stores new
knowledge and occasionally replays it to the GeppNet layer
during sleep phases interleaved with training phases. This latter
approach demonstrated better performance and faster
convergence in incremental learning tasks with the MNIST
dataset. However, the STM's limited capacity means that new
knowledge can overwrite old information [10]. To address the
significant memory requirements, a SOM-based memory-less
architecture (SOMLP) was proposed, which combines standard

supervised neural networks with SOM to tackle the continual
learning problem [11]. Another approach, Dendritic SOM
(DendSOM), was proposed as a single-layer SOM for feature
extraction using a set of hit-matrices. The input image was
divided into patches and projected onto independent SOMs,
each accompanied by hit-matrices to associate labels with the
units. However, the formation of hit-matrices remains opaque
[12]. Additionally, a memory-based model called continual
SOM (CSOM) was introduced to generalize the standard SOM
with minimal memory allocation. The structural design of
DendSOM was adopted to manage the spatial dimension of the
data [13]. Despite these advancements, all these models suffer
from the stability–plasticity dilemma, a well-known issue in
lifelong learning aimed at preventing catastrophic forgetting in
computational models[14] [15].

Summarizing the research on Self-Organizing Maps (SOM),
it is evident that SOM offers greater tractability in the learning
process with new information. However, the introduction of
additional classes necessitates excessively large maps for
accommodation, leading to computational inefficiency and
reduced feasibility. For self-organizing networks, catastrophic
interference escalates rapidly with oversized maps, leading to
performance degradation. Even stringent predefined map size
limitations hinder the integration of new data eventually.
Irrespective of map size, retraining exacerbates forgetting, as
new features overwrite existing ones. To address these issues,
this study proposes handling data in groups and processing them
sequentially, "storing" previously learned maps before using the
model for the next group. The architecture is a memory-based
model that produces a bank of trained map weights as the
outcome. The core contributions of the study are outlined below.

1. The proposed model handles new data by creating a new
group and producing a new map without updating or
interfering with the old maps. This approach eliminates
the issue of forgetting, as no new information overwrites
the old ones. As each map only represent fewer class,
larger map size is not required.

2. The testing process only utilizes trained weight and
labeled array to predict the label which makes the SOM
available to get trained on new data with a new class
independently and simultaneously.

3. The model offers the flexibility to be retrained on new
data for which it has already been trained without
interfering with any other group. This is achieved by
using the current trained weights as filter initialization
and performing training on the new data.

The rest of the paper is structured as follows: Section II
explains the proposed methods including training, labelling and
testing phases. Experimental details and results are provided in
section III. Section IV has discussion and comparison of the
results to the close studies. The paper is concluded with
conclusion and future work in section V.

II. PROPOSED MODEL

The proposed method utilizes the datasets into groups and
the concept is explained in the first subsection. The following
subsections describes training of the SOM, labelling and testing.

A. Concept of Grouping
Traditionally, the training of nearly all machine learning

models involves using the entire training dataset, including
SOM. However, when the complete training dataset
encompassing all labels is not initially available and new data
associated with new classes is introduced over time, recent
studies on SOM for continual learning employ various strategies
to minimize the impact on previously trained weights. The
challenge with SOM lies in its constrained output space: the map
size is fixed initially, and adding more nodes to a 2D structure
in terms of columns and rows can distort cluster shapes. New
clusters for new data cannot simply be linear, requiring them to
occupy space previously learned by other samples. The SOM's
neighborhood learning attempts to symmetrically shape clusters,
but whether the map size is increased or not, the process of
retraining with new data inevitably affects existing knowledge.
As more data arrives, the phenomenon of catastrophic forgetting
becomes unavoidable. Using an excessively large map from the
outset also fails to resolve the problem, as it would exponentially
increase training time, and at some point, it would hit the
bottleneck of accommodating more classes. Also, there is no
surety of preventing interference between previously learned
nodes and new ones. The issue of uncontrollable learning in
SOM stems from the absence of a clear objective function for
managing map updates.

To address the issue of forgetting, we propose a novel
approach that involves processing the initially available data in
groups rather than as a single set. These groups consist of
samples belonging to specific labels, although the labels
themselves are not used during training to maintain an
unsupervised approach. Initially, the labels are only employed to
partition the large dataset into these groups and can be
considered as data-preprocessing. Fig. 1 illustrates the overall
structure of our proposed method for handling data over time.
Each group includes datasets associated with two different
labels. Number of classes per group is a hyperparameter, and
chosen as two to facilitate comparison with previous studies.

During the training phase, labels are not employed. As
depicted in Fig. 1, after training each group, the corresponding
map is generated and stored in a memory bank. Subsequently,
the weights are re-initialized for the next group, and a new map
is generated and stored in the same manner. This process iterates
through all the groups. Once training is completed, the labeling
process utilizes these trained maps alongside labels to create
labeled arrays. In the testing phase, predictions are made using
the trained maps, labeled arrays, and test samples with their
actual labels, allowing comparison between predicted and actual
labels. Detailed explanations of the training, labeling, and
testing phases follow in subsequent subsections.

B. Training of the SOM
The SOM training follows the original method introduced by
Kohonen [16]. As explained in previous subsection, the input
dataset is divided into groups. Each group sequentially trains the
SOM according to Algorithm 1 without any labeled information.
As illustrated in Fig. 2, the Euclidean distance is computed from

Fig. 1. The overview of the proposed structure. Introduction of new data in groups and generation of trained weights to store as learnt maps.

each image to all nodes within the assigned map. The node with
the shortest distance is identified as the Best Matching Unit
(BMU), representing the node most closely resembling the
image in terms of data distribution or pattern similarity (lines 3-
7, Algorithm I).

Once the BMU is determined, the next step involves
updating the weights to move the BMU closer to the input
image. Simultaneously, the weights of neighboring nodes to the
BMU are adjusted based on a neighborhood function (lines 8-
10, Algorithm I). 𝑁ሺ𝑡ሻ defines the extent of the neighborhood,
which decreases over epochs; roughly halfway through training,
only the BMU undergoes weight updates.

The training concludes upon reaching the maximum number
of epochs. The main hyperparameters for SOM are map size,
maximum number of Epochs (t), which defines the training
cycles, learning rate 𝜂ሺ0ሻ and initial neighborhood width or
radius 𝛿ሺ0ሻ. 𝜂 and 𝛿 are linear and monotonically decreasing
functions respectively (lines 13 and 14, Algorithm I). The Fig. 1
mimics training process as continual learning which generates
map banks as outcome.

TABLE I
TRAINING OF SOM

Algorithm I. SOM Training
Inputs: A batch of training dataset (No labels)
Output: Trained SOMs
1: Weight Initialization: Random [0,1]
2:
3:

4:
5:
6:

7:

8:
9:

10:

11:
12:

13:

14:
15:

for t in epochs
for s in train samples per group

//find the BMU
for i in nodes in SOM

calculate 𝑑ሺ𝑠,𝑤௜ሻ //𝑑ሺ𝑠,𝑤௜ሻ ൌ ‖𝑠 െ 𝑤௜‖ଶ
end

arg𝑚𝑖𝑛
𝑖

 𝑑ሺ𝑠,𝑤௜ሻ  BMU // 𝑛஻ெ௎

// weight update
for i in nodes in SOM

Compute the neighborhood function 𝑁ሺ𝑡ሻ

// 𝑁ሺ𝑡ሻ ൌ 𝑒𝑥𝑝
ቆି

ฮ೙ಳಾೆ – ೙ฮ
మ

మഃሺ೟ሻమ
ቇ

Weight update 𝑤௜ሺ𝑡 ൅ 1ሻ
//𝑤௜ሺ𝑡 ൅ 1ሻ ൌ 𝑤௜ሺ𝑡ሻ ൅ 𝜂ሺ𝑡ሻ𝑁ሺ𝑡ሻ൫𝑠 െ 𝑤௜ሺ𝑡ሻ൯

end
end

Update learning rate 𝜂ሺ𝑡ሻ// 𝜂ሺ𝑡ሻ ൌ 0.49 ቀ1 െ
௧

௘௣௢௖௛
ቁ ൅ 0.01

Update neighborhood width 𝛿ሺ𝑡ሻ ൌ 𝛿ሺ0ሻ 𝑒𝑥𝑝ቀ
ି

೟
೐೛೚೎೓ቁ

end

Fig. 2. BMU selection in SOM. For demonstration, node 22 is depicted as the

BMU for the highlighted patch considering 𝑑ሺ𝑥,𝑤ଶଶሻ is the minimum distance.
The neighborhood nodes of the BMU are highlighted with blue backlight.

C. Labelling of the arrays
The labeling process commences immediately after the

training phase concludes, following the steps outlined in
Algorithm II. The inputs to these sections include subsets of the
labeled training dataset and the trained SOM maps. These inputs
generate labeled arrays as outputs, where each array aligns
spatially with the SOM map grid. Each element within the array
functions as a unit storing a label represented by the node at the
corresponding location on the SOM map.

TABLE II
LABELING OF THE ARRAYS

Algorithm II. SOM Labeling
Inputs: A subset (s) of the batch of the training dataset (with labels)
and Trained SOMs
Output: Arrays with label information
1:

2:

3:
4:
5:
6:
7:

The number of patches (=SOMs) defines the number of arrays.

for s in a subset of train samples

// Find the BMU with designated SOM(k)
for n in group branches

Index (BMU)  j
Label[s]  array[n, j]

end
end

For each image, the Best Matching Unit (BMU) is identified
using the trained map based on Euclidean distance. Once the
BMU is determined, its index is recorded, and the corresponding
label for that sample is assigned to the corresponding index in
the respective array. Each group maintains its own map and
associated array to represent the labels associated with that map.

Map 1

New data
Group: N Initial data

Group: 1

New data
Group: 2

SOM
(Algorithm-I)

Input samples
Size: n x n

Each group represents
two class

Trained maps
Size: 18 x 18 x n x n
Memory bank size:
N x 18 x 18 x n x n

Map N

Unlike during training, no further weight updates occur once the
BMU is determined. Each sample is processed once, and this
process repeats for all samples. As each group is sequentially
trained over time, the memory bank accumulates trained maps
along with their respective labeled arrays.

D. Testing and decision making
The model evaluation utilizes the test dataset, which

includes labels. Each test image is projected onto all trained
maps. We have implemented a multi-BMU technique, where
instead of identifying just one closest distance, we determine the
three closest distances per map. These distances are summed for
each map, and the map with the smallest total distance
determines the winning map and corresponding group. The three
node indexes contributing to the decision of the winning group
are recorded, and the labels associated with these indexes are
extracted from the array belonging to the winning group. The
mode of these three labels is then compared against the actual
label to assess the model's performance. Since each map and
array represent only two classes, the mode operation
consistently identifies a clear winner.

III. EXPERIMENTS

This section addresses the datasets utilized in the
experiments, the hyperparameters selection and evaluation
metrices. The algorithm implementation was carried out in
Python 3.8.8, utilizing the MiniSOM library for SOM
calculations within the Keras framework [17]. The experiment
was conducted on a Core i7-10700 processor without a GPU
acceleration.

A. Datasets
The experiments utilized three datasets: MNIST-digit [18],

Fashion-MNIST [19] and CIFAR-10 [20]. The data
characteristics are detailed in Table III. MNIST-digit and
Fashion-MNIST datasets consist of 8-bit grayscale images
depicting digits and clothing items, respectively. Both datasets
have comparable sizes for their training and testing subsets, with
images uniformly sized at 28 x 28 pixels. In contrast, CIFAR-10
is a more complex dataset containing 24-bit color images
representing real-world objects. Each image in CIFAR-10
measures 32 x 32 pixels, with objects randomly positioned
within the spatial domain.

As part of the data preparation, the dataset undergoes
normalization. Furthermore, the conversion of RGB to grayscale
is achieved by assigning equal weight to each color channel. No
additional data processing steps are applied. Training
exclusively utilizes the clean training dataset.

For the colored datasets like CIFAR-10, using only the blue
channel for both training and testing results in a performance

enhancement of 2 - 2.5% compared to using grayscale or other
channels. This finding was incorporated into subsequent
experiments on these datasets, where all operations were
conducted exclusively using the blue channels.

B. Hyperparameters selection

The experiments primarily involve two types of
hyperparameters: 1) Key SOM parameters, as detailed in section
II, and 2) parameters related to data selection. The SOM
parameters used in the current experiments are specified in Table
IV. As the study does not focus extensively on fine-tuning
hyperparameters and their impact on model performance, they
undergo moderate tuning and are selected following a few trial-
and-error iterations.

C. Performance metrics
1. Accuracy: The model's performance is assessed as groups

are sequentially added to the model, with each addition
considered a task. Initially, the model begins with only task
1, where it is trained using the first group of data. Adding
subsequent groups results in tasks labeled as Nth,
corresponding to the Nth group. Two types of performance
metrics are observed:
1) Task-specific accuracy: it evaluates performance using

only the test dataset from the current task against all
previously learned maps [12],

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௧ ൌ ଵ
ே೟

 ∑ 𝐴𝐿௡ ∩ 𝑃𝐿௡
ே೟
௡ୀଵ (1)

Where, 𝑁௧ is the size of the test dataset per task, 𝐴𝐿௡ is
actual label, 𝑃𝐿௡ is the predicted label over all previous learnt
maps.

2) Average accuracy: The performance on task j after
applying it on all previous task 𝑛௝ is denoted as 𝑎௡ೕ,௝ . The

average accuracy at task T after testing it on all previous
tasks from 1 to T-1 is as follows [21]:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦் ൌ ଵ
்

 ∑ 𝑎௡ೕ,௝
்
௝ୀଵ (2)

2. Average Interference: It is defined as the average decrease
in performance for each task from its highest accuracy to the
accuracy attained at the end of training, computed as follows:
[21]:

𝐹் ൌ ଵ

்ିଵ
 ∑ 𝑓௝்ିଵ

௝ୀଵ (3)

Where, 𝑓௝ is forgetting term for task j. after model is applied
on task T and is defined as follows:

𝑓௝ ൌ max
ఛୀሾଵ,ଶ,…்ሿ

൫𝑎ఛ,௝ െ 𝑎்,௝൯ (4)

TABLE III
DATASET STATISTICS

Dataset
Train

dataset
Classes

Images
per class

Test
dataset

Size of a
sample

Used train
dataset for

training

Used train
dataset for
labeling

Used test
dataset for

testing
MNIST-digit 60000 10 6000 10000 28 x 28 4000 4000 10000
Fashion-MNIST 60000 10 6000 10000 28 x 28 4000 4000 10000
CIFAR-10 (RGB) 50000 10 5000 10000 32 x 32 x 3 7000 7000 10000

TABLE IV
HYPERPARAMETERS FOR THE PROPOSED STRUCTURE

Parameter Value
Class per group 2
Number of SOM per dataset 5

SOM Map Size
15 x 15 x 28 x 28

15 x 15 x 32 x 32*
Array size 15 x 15
Iteration 27000
Neighborhood radius 1
Learning rate 0.5

*Denotes the modification of hyperparameter for CIFAR-10

IV. RESULTS AND DISCUSSION

 The model was applied to all three datasets using the
hyperparameters outlined in Table IV. The accuracy for the task-
specific dataset (Equation 1) and the overall average accuracy
across all test datasets up to a given task (Equation 2) were
recorded at each task, as detailed in Table V. With each task, a
group representing two classes is added to the model, increasing
the size of the memory bank by one map and one array. During
the decision-making process at each task, all maps learned thus
far, including the current one, are considered to determine the
winning group.
 A low task-specific accuracy at a particular task indicates
that the group containing two classes has poorly learned a map,
which does not emerge as the winner in the decision-making
process. For instance, Group 5 for MNIST-digit, Group 4 for
Fashion-MNIST, and Group 3 for CIFAR-10 were identified as
the worst performers individually.
 Typically, forgetting occurs when new features learned from
new data overwrite or modify previously learned information.
Previous SOM-based studies have employed similar maps to
accommodate new knowledge or have retrained models using
previously learned maps as initial weight states. However, in our
approach, when new data is introduced, learning results in the
creation of a new map while leaving old maps untouched.
Consequently, there is technically no forgetting or interference
during the training process itself. However, during the decision-
making phase, all trained maps must be considered to identify
the most closely related map to the sample. If multiple maps
representing classes closely resemble each other, an incorrect
group might be selected as the winner, which fits the definition
of "interference." This can lead to a decline in accuracy at each
task. The performance based average interference or forgetting

TABLE V
TASK SPECIFIC ACCURACY OVER PREVIOUSLY LEARNT TASKS

 MNIST-digit Fashion-MNIST CIFAR-10
Task 1 100% 97.44% 75.05%
Task 2 97.55% 92% 47.77%
Task 3 98.11% 91.16% 25.22%
Task 4 96.56% 73.16% 35.72%
Task 5 92.4% 91.33% 37.11%

AVERAGE ACCURACY OVER PREVIOUSLY LEARNT TASKS

 MNIST-digit Fashion-MNIST CIFAR-10
Task 1 100% 97.44% 75.05%
Task 2 98.78% 94.72% 60.16%
Task 3 98.55% 93.53% 48.51%
Task 4 98.06% 83.44% 45.32%
Task 5 96.92% 84.14% 43.67%

TABLE VI
AVERAGE INTERFERENCE AT EACH TASK

 MNIST-digit Fashion-MNIST CIFAR-10
Task 1 0.00% 0.00% 0.00%
Task 2 0.08% 3.68% 7.9%
Task 3 1.91% 12.22% 13.25%
Task 4 2.07% 19.48% 36.38%
Task 5 2.21% 18.19% 39.2%

(Equation 3) is recorded in Table VI. At the first task, there is
only one map and no interference in selecting winner group.
 The results obtained from our study were compared with
previous SOM-based research. Fig. 3. displays the overall
average accuracy at each task for MNIST-digit, with numbers
extracted from relevant papers. Our proposed study achieves the
highest accuracy throughout all tasks, including the final task
encompassing all classes. Regarding Fashion-MNIST, we did
not find specific results from the mentioned studies. However,
results from previous studies on CIFAR-10 have been plotted
alongside our proposed study in Fig. 4. DendSOM performs
better for all tasks due to its effective patch-based learning for
much diverse CIFAR-10. However, by the end of Task 5, the
proposed method catches up with DendSOM, suggesting lower
interference during incremental learning. It is worth noting that
our proposed approach utilizes a single SOM model, whereas
DendSOM employs 225 SOM models. Encompassing all
classes, a single tradition SOM attains an accuracy of 58.95%
for the MNIST-digit dataset, 52% for Fashion-MNIST, and
25.7% for CIFAR-10. In contrast, the proposed method achieves
96.92%, 84.14%, and 43.67% for these datasets, respectively.
This indicates an improvement in final accuracy by grouping
over the traditional SOM by 60-70%.
 In summary, the proposed approach of learning classes in
groups and storing learned maps in a memory bank effectively
eliminates the limitation of catastrophic forgetting. By utilizing
a single SOM that is reinitialized and trained with new data, the
model achieves higher efficiency and lower computational load
compared to previous methods. This method also supports
lifelong learning, where each new group of data adds a map and
a labeled array to the memory bank for future use.

Fig. 3. Average accuracy for MNIST-digit per task

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Task 1 Task 2 Task 3 Task 4 Task 5

A
cc

u
ra

cy

Prposed Method DendSOM[12]

SOM CSOM[13]

GePPNet[9] GEPPNet+STM[9]

Number of SOMs utilized:
Proposed Structure: 1
DendSOM: 49
SOM: 1
CSOM: 4
GePPNet: 1
GePPNet+STM: 1

Fig. 4. Average accuracy for CIFAR-10 per task

 For groups with additional available data, the SOM can be
initialized with the existing trained weights and further trained
with new data to enhance the map for that group. This is crucial
if a group map performs poorly providing BMUs for own test
dataset (e.g., Group 4 for Fashion-MNIST). The labeling and
testing phases only require the trained weights and labels, not
the entire model itself, which ensures independence between
training and real-time testing operation parallelly.
 An additional advantage is that labeled arrays can be
optimized independently without modifying the weights,
potentially improving accuracy. One limitation associated with
the grouping concept is interference in winning group selection.
As the number of maps increases, traditional distance
measurement techniques become less effective in accurately
identifying the correct group, which can result in incorrect
predictions. To mitigate this issue, we intend to explore the
implementation of additional metrics alongside Euclidean
distance to determine the winning nodes.

V. CONCLUSION

This research presents a back-propagation free,
unsupervised memory-based approach that utilizes a single Self-
Organizing Map (SOM) as a tool for continuous learning. Unlike
SOM-based approaches, this method offers several key benefits;

1. Prevention of Forgetting: Training individual maps helps
prevent the issue of forgetting.

2. Separate Testing: This allows the model to learn from
data while being used in real-time applications.

3. Efficiency: The model operates faster due to its design.
The model adjusts to data using multiple maps while

keeping previously learned maps intact. Each new dataset
creates a map without impacting existing ones. During testing,
only the learned maps and labeled arrays are required to predict
labels, enabling the SOM model to train on available data with
fresh class labels simultaneously with testing phases.

This study confirms the effectiveness of group learning
utilizing a Vanilla SOM, demonstrating substantially faster
processing times compared to studies that employ multiple
SOMs and various data processing modifications. Upon
presenting all classes in the dataset, the proposed methods
achieved accuracies of 96.92% for MNIST-digit, 84.14% for
Fashion MNIST, and 43.67% for CIFAR-10, representing an
improvement of nearly 60-70% over traditional SOM.

Future research will concentrate on improving class
selection within each group and introducing methods to improve
the correct group selections.

VI. REFERENCE

[1] A. Khan et al, "A survey of the recent architectures of deep
convolutional neural networks," Artif Intell Rev, vol. 53, (8), pp.
5455, 2020. DOI: 10.1007/s10462-020-09825-6.

[2] A. Shrestha and A. Mahmood, "Review of Deep Learning
Algorithms and Architectures," IEEE Access, vol. 7, pp. 53040,
2019. DOI: 10.1109/access.2019.2912200

[3] G. I. Parisi et al, "Continual lifelong learning with neural networks:
A review," Neural Networks, vol. 113, pp. 54, 2019. DOI:
10.1016/j.neunet.2019.01.012.

[4] L. Wang et al, "A Comprehensive Survey of Continual Learning:
Theory, Method and Application," IEEE Trans. Pattern Anal.
Mach. Intell., pp. 1, 2024. DOI: 10.1109/tpami.2024.3367329.

[5] M. K. Benna and S. Fusi, "Computational principles of synaptic
memory consolidation," Nat Neurosci, vol. 19, (12), pp. 1697,
2016. DOI: 10.1038/nn.4401.

[6] G. Hinton, O. Vinyals and J. Dean, "Distilling the Knowledge in a
Neural Network," 2015.

[7] A. A. Rusu et al, "Progressive Neural Networks," arXiv Preprint
arXiv:1606.04671, 2016.

[8] B. L. Üders, M. Schläger and S. Risi, "Continual Learning through
Evolvable Neural Turing Machines," 2016.

[9] A. Gepperth and C. Karaoguz, "A Bio-Inspired Incremental
Learning Architecture for Applied Perceptual Problems," Cogn
Comput, vol. 8, (5), pp. 924, 2016. DOI: 10.1007/s12559-016-
9389-5.

[10] A. Gepperth and C. Karaoguz, "A Bio-Inspired Incremental
Learning Architecture for Applied Perceptual Problems," Cogn
Comput, vol. 8, (5), pp. 924, 2016. DOI: 10.1007/s12559-016-
9389-5.

[11] P. Bashivan et al, "Continual learning with self-organizing maps,"
arXiv Preprint arXiv:1904.09330, 2019.

[12] K. Pinitas, S. Chavlis and P. Poirazi, "Dendritic Self-Organizing
Maps for Continual Learning," arXiv Preprint arXiv:2110.13611,
2021.

[13] H. Vaidya et al, "Neuro-mimetic Task-free Unsupervised Online
Learning with Continual Self-Organizing Maps," arXiv Preprint
arXiv:2402.12465, 2024.

[14] G. I. Parisi et al, "Lifelong learning of human actions with deep
neural network self-organization," Neural Networks, vol. 96, pp.
137, 2017. DOI: 10.1016/j.neunet.2017.09.001.

[15] F. M. Richardson and M. S. C. Thomas, "Critical periods and
catastrophic interference effects in the development of self‐
organizing feature maps," Developmental Science, vol. 11, (3), pp.
371, 2008. DOI: 10.1111/j.1467-7687.2008.00682.x.

[16] T. Kohonen, "The self-organizing map," Proc IEEE, vol. 78, (9),
pp. 1464-1480, 1990.

[17] V. Giuseppe, "MiniSom: minimalistic and NumPy-based
implementation of the Self Organizing Map," unpublished.

[18] D. Dua and C. Graff, "UCI machine learning repository," 2017.
[19] H. Xiao, K. Rasul and R. Vollgraf, "Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms," 2017.
[20] Alex Krizhevsky, “Learning Multiple Layers of Features from

Tiny Images,” 2009. Available: http
https://www.cs.toronto.edu/~kriz/cifar.html

[21] P. Kumar and D. Toshniwal, "Lifelong learning gets better with
MixUp and unsupervised continual representation," Appl Intell, vol.
54, (7), pp. 5235, 2024. DOI: 10.1007/s10489-024-05434-w

20%

40%

60%

80%

100%

Task 1 Task 2 Task 3 Task 4 Task 5

A
cc

u
ra

cy

Prposed Method DendSOM[12] SOM

Number of SOMs utilized:
Proposed Structure: 1
DendSOM: 225
SOM: 1

