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Abstract – Continual learning is essential for intelligent 
systems to thrive. While deep learning models based on 
Convolutional Neural Networks are robust, they can be 
complex and resource-intensive, requiring a long and 
computationally intensive training phase due to Back-
propagation (BP). On the other hand, unsupervised methods 
are favored for their lightweight, speed, and ease of 
management, making them ideal for ongoing learning. Self-
organizing maps (SOMs) have gained attention in computer 
vision over the past decade due to their excellent feature 
extraction abilities and transparency. However, SOMs 
encounter challenges in learning, such as having a fixed map 
size that limits new feature accommodation and the risk of 
interference when retraining a pre-trained map with the 
latest data. Although some studies have explored using 
SOMs to tackle these issues, obstacles like catastrophic 
forgetting and lifelong learning hurdles remain prevalent. To 
combat forgetting issues, we propose an approach called 
learning by grouping. In this method, each group generates 
a trained map stored in memory before the model is reset 
and trained on the group to create another map. This 
sequential process facilitates learning while preserving 
previously acquired knowledge without disruptions. The 
suggested approach has been tried out on MNIST digit, 
Fashion MNIST, and CIFAR 10 datasets. The proposed 
method demonstrates final accuracy improvement of 60-
70% across all three datasets when compared to traditional 
SOM, indicating the effectiveness of grouping in overcoming 
the limitations of SOM-based continual learning methods. 
 

I. INTRODUCTION 

Convolutional Neural Network (CNN)-based deep 
architectures have achieved significant success in the field of 
computer vision, demonstrating exceptional efficiency across 
various applications[1] [2]. These deep learning (DL) models are 
typically trained on labeled data for all available classes or target 
groups. When new data from a previously unseen class is 
introduced, the existing trained model cannot adapt without 
requiring a complete retraining of the entire architecture. The 
capability to continuously learn over time by incorporating new 
knowledge while retaining previously acquired experiences is 
known as continual or lifelong learning [3]. Unlike humans, who 
seamlessly integrate new information while preserving old 

knowledge, traditional algorithms face challenges in this area. 
The complexity and large size of DL architectures result in 
substantial time and computational power requirements for 
retraining. 

To address the challenge of making deep architectures 
adaptive, significant approaches have been proposed for 
continual learning (CL) [4]. Models designed with CL 
functionality to prevent forgetting old tasks are primarily 
categorized into three types: retraining with regularization, 
training with network expansion, and selective network 
retraining and expansion. [5] [6]. Introducing new sub-networks 
prevent catastrophic forgetting, the parameters learned for 
existing tasks remain unchanged, while new parameters are 
added and trained [7]. Combining both concepts in a balanced 
manner constitutes the third category of architecture. Additional 
categories include replay-based approaches, optimization-based 
approaches, representation-based approaches, and memory-
based methods [4] [8]. These advancements have predominantly 
been applied to supervised models, particularly deep neural 
networks. DL models often suffer from limited tractability, 
making their outcomes difficult to interpret, which poses a 
significant bottleneck to major improvements. To transparently 
study the effects of adaptive learning, a few studies have focused 
on unsupervised approaches. Although these models are not as 
efficient as their supervised counterparts for large datasets, they 
are lightweight, tractable, and faster. 

Self-organizing maps (SOM) are an unsupervised clustering 
technique widely used for dimensionality reduction, feature 
extraction, and clustering in image datasets. Several key studies 
have attempted to implement SOM for continual learning. Two 
SOM-based models were proposed for incremental learning: (i) 
a modified self-organizing map (GeppNet) and (ii) a SOM 
extended with a short-term memory (GeppNet+STM) [3][9]. In 
GeppNet, task-relevant feedback from a regression layer 
determines whether learning in the self-organizing hidden layer 
should occur. In GeppNet+STM, the STM stores new 
knowledge and occasionally replays it to the GeppNet layer 
during sleep phases interleaved with training phases. This latter 
approach demonstrated better performance and faster 
convergence in incremental learning tasks with the MNIST 
dataset. However, the STM's limited capacity means that new 
knowledge can overwrite old information [10]. To address the 
significant memory requirements, a SOM-based memory-less 
architecture (SOMLP) was proposed, which combines standard 



supervised neural networks with SOM to tackle the continual 
learning problem [11]. Another approach, Dendritic SOM 
(DendSOM), was proposed as a single-layer SOM for feature 
extraction using a set of hit-matrices. The input image was 
divided into patches and projected onto independent SOMs, 
each accompanied by hit-matrices to associate labels with the 
units. However, the formation of hit-matrices remains opaque 
[12]. Additionally, a memory-based model called continual 
SOM (CSOM) was introduced to generalize the standard SOM 
with minimal memory allocation. The structural design of 
DendSOM was adopted to manage the spatial dimension of the 
data [13]. Despite these advancements, all these models suffer 
from the stability–plasticity dilemma, a well-known issue in 
lifelong learning aimed at preventing catastrophic forgetting in 
computational models[14] [15]. 

Summarizing the research on Self-Organizing Maps (SOM), 
it is evident that SOM offers greater tractability in the learning 
process with new information. However, the introduction of 
additional classes necessitates excessively large maps for 
accommodation, leading to computational inefficiency and 
reduced feasibility. For self-organizing networks, catastrophic 
interference escalates rapidly with oversized maps, leading to 
performance degradation. Even stringent predefined map size 
limitations hinder the integration of new data eventually. 
Irrespective of map size, retraining exacerbates forgetting, as 
new features overwrite existing ones. To address these issues, 
this study proposes handling data in groups and processing them 
sequentially, "storing" previously learned maps before using the 
model for the next group. The architecture is a memory-based 
model that produces a bank of trained map weights as the 
outcome. The core contributions of the study are outlined below. 

1. The proposed model handles new data by creating a new 
group and producing a new map without updating or 
interfering with the old maps. This approach eliminates 
the issue of forgetting, as no new information overwrites 
the old ones. As each map only represent fewer class, 
larger map size is not required. 

2. The testing process only utilizes trained weight and 
labeled array to predict the label which makes the SOM 
available to get trained on new data with a new class 
independently and simultaneously. 

3. The model offers the flexibility to be retrained on new 
data for which it has already been trained without 
interfering with any other group. This is achieved by 
using the current trained weights as filter initialization 
and performing training on the new data. 

The rest of the paper is structured as follows: Section II 
explains the proposed methods including training, labelling and 
testing phases. Experimental details and results are provided in 
section III. Section IV has discussion and comparison of the 
results to the close studies. The paper is concluded with 
conclusion and future work in section V. 
 

II. PROPOSED MODEL 

The proposed method utilizes the datasets into groups and 
the concept is explained in the first subsection. The following 
subsections describes training of the SOM, labelling and testing. 

A. Concept of Grouping 
Traditionally, the training of nearly all machine learning 

models involves using the entire training dataset, including 
SOM. However, when the complete training dataset 
encompassing all labels is not initially available and new data 
associated with new classes is introduced over time, recent 
studies on SOM for continual learning employ various strategies 
to minimize the impact on previously trained weights. The 
challenge with SOM lies in its constrained output space: the map 
size is fixed initially, and adding more nodes to a 2D structure 
in terms of columns and rows can distort cluster shapes. New 
clusters for new data cannot simply be linear, requiring them to 
occupy space previously learned by other samples. The SOM's 
neighborhood learning attempts to symmetrically shape clusters, 
but whether the map size is increased or not, the process of 
retraining with new data inevitably affects existing knowledge. 
As more data arrives, the phenomenon of catastrophic forgetting 
becomes unavoidable. Using an excessively large map from the 
outset also fails to resolve the problem, as it would exponentially 
increase training time, and at some point, it would hit the 
bottleneck of accommodating more classes. Also, there is no 
surety of preventing interference between previously learned 
nodes and new ones. The issue of uncontrollable learning in 
SOM stems from the absence of a clear objective function for 
managing map updates.  

To address the issue of forgetting, we propose a novel 
approach that involves processing the initially available data in 
groups rather than as a single set. These groups consist of 
samples belonging to specific labels, although the labels 
themselves are not used during training to maintain an 
unsupervised approach. Initially, the labels are only employed to 
partition the large dataset into these groups and can be 
considered as data-preprocessing. Fig. 1 illustrates the overall 
structure of our proposed method for handling data over time. 
Each group includes datasets associated with two different 
labels. Number of classes per group is a hyperparameter, and 
chosen as two to facilitate comparison with previous studies. 

During the training phase, labels are not employed. As 
depicted in Fig. 1, after training each group, the corresponding 
map is generated and stored in a memory bank. Subsequently, 
the weights are re-initialized for the next group, and a new map 
is generated and stored in the same manner. This process iterates 
through all the groups. Once training is completed, the labeling 
process utilizes these trained maps alongside labels to create 
labeled arrays. In the testing phase, predictions are made using 
the trained maps, labeled arrays, and test samples with their 
actual labels, allowing comparison between predicted and actual 
labels. Detailed explanations of the training, labeling, and 
testing phases follow in subsequent subsections. 

 
B. Training of the SOM 
The SOM training follows the original method introduced by 
Kohonen [16]. As explained in previous subsection, the input 
dataset is divided into groups. Each group sequentially trains the 
SOM according to Algorithm 1 without any labeled information. 
As illustrated in Fig. 2, the Euclidean distance is computed from



 

Fig. 1. The overview of the proposed structure. Introduction of new data in groups and generation of trained weights to store as learnt maps. 

 
each image to all nodes within the assigned map. The node with 
the shortest distance is identified as the Best Matching Unit 
(BMU), representing the node most closely resembling the 
image in terms of data distribution or pattern similarity (lines 3-
7, Algorithm I).  

Once the BMU is determined, the next step involves 
updating the weights to move the BMU closer to the input 
image. Simultaneously, the weights of neighboring nodes to the 
BMU are adjusted based on a neighborhood function (lines 8-
10, Algorithm I). 𝑁ሺ𝑡ሻ defines the extent of the neighborhood, 
which decreases over epochs; roughly halfway through training, 
only the BMU undergoes weight updates.  

The training concludes upon reaching the maximum number 
of epochs. The main hyperparameters for SOM are map size, 
maximum number of Epochs (t), which defines the training 
cycles, learning rate 𝜂ሺ0ሻ and initial neighborhood width or 
radius 𝛿ሺ0ሻ. 𝜂 and 𝛿 are linear and monotonically decreasing 
functions respectively (lines 13 and 14, Algorithm I). The Fig. 1 
mimics training process as continual learning which generates 
map banks as outcome. 

TABLE I 
TRAINING OF SOM 

Algorithm I. SOM Training 
Inputs: A batch of training dataset (No labels) 
Output: Trained SOMs 
1: Weight Initialization: Random [0,1] 
2: 
3: 
 
4: 
5: 
6: 

7: 

8: 
9: 
 

10: 

11: 
12: 

13: 

14: 
15: 

for t in epochs 
for s in train samples per group 

//find the BMU 
for i in nodes in SOM 

calculate 𝑑ሺ𝑠,𝑤௜ሻ //𝑑ሺ𝑠,𝑤௜ሻ ൌ ‖𝑠 െ 𝑤௜‖ଶ 
end 

arg𝑚𝑖𝑛
𝑖

 𝑑ሺ𝑠,𝑤௜ሻ  BMU // 𝑛஻ெ௎ 

// weight update 
for i in nodes in SOM 

Compute the neighborhood function 𝑁ሺ𝑡ሻ 

// 𝑁ሺ𝑡ሻ ൌ  𝑒𝑥𝑝
ቆି

ฮ೙ಳಾೆ – ೙ฮ
మ

మഃሺ೟ሻమ
ቇ
 

Weight update 𝑤௜ሺ𝑡 ൅ 1ሻ  
//𝑤௜ሺ𝑡 ൅ 1ሻ ൌ  𝑤௜ሺ𝑡ሻ ൅  𝜂ሺ𝑡ሻ𝑁ሺ𝑡ሻ൫𝑠 െ  𝑤௜ሺ𝑡ሻ൯ 

end 
end 

Update learning rate 𝜂ሺ𝑡ሻ// 𝜂ሺ𝑡ሻ ൌ 0.49 ቀ1 െ
௧

௘௣௢௖௛
ቁ ൅ 0.01 

Update neighborhood width 𝛿ሺ𝑡ሻ ൌ  𝛿ሺ0ሻ 𝑒𝑥𝑝ቀ
ି

೟
೐೛೚೎೓ቁ 

end 

 

 
Fig. 2. BMU selection in SOM. For demonstration, node 22 is depicted as the 

BMU for the highlighted patch considering 𝑑ሺ𝑥,𝑤ଶଶሻ is the minimum distance. 
The neighborhood nodes of the BMU are highlighted with blue backlight. 

C. Labelling of the arrays 
The labeling process commences immediately after the 

training phase concludes, following the steps outlined in 
Algorithm II. The inputs to these sections include subsets of the 
labeled training dataset and the trained SOM maps. These inputs 
generate labeled arrays as outputs, where each array aligns 
spatially with the SOM map grid. Each element within the array 
functions as a unit storing a label represented by the node at the 
corresponding location on the SOM map.  

TABLE II 
LABELING OF THE ARRAYS 

Algorithm II. SOM Labeling 
Inputs: A subset (s) of the batch of the training dataset (with labels) 
and Trained SOMs 
Output: Arrays with label information 
1: 
 
2: 
 
3: 
4: 
5: 
6: 
7: 

The number of patches (=SOMs) defines the number of arrays.  
 
for s in a subset of train samples 

// Find the BMU with designated SOM(k) 
for n in group branches 

Index (BMU)  j 
Label[s]  array[n, j] 

end 
end 

For each image, the Best Matching Unit (BMU) is identified 
using the trained map based on Euclidean distance. Once the 
BMU is determined, its index is recorded, and the corresponding 
label for that sample is assigned to the corresponding index in 
the respective array. Each group maintains its own map and 
associated array to represent the labels associated with that map. 

Map 1 

New data 
Group: N Initial data 

Group: 1 

New data 
Group: 2 

SOM 
(Algorithm-I) 

Input samples 
Size: n x n 
 
Each group represents 
two class 

Trained maps 
Size: 18 x 18 x n x n 
Memory bank size: 
N x 18 x 18 x n x n 

Map N 



Unlike during training, no further weight updates occur once the 
BMU is determined. Each sample is processed once, and this 
process repeats for all samples. As each group is sequentially 
trained over time, the memory bank accumulates trained maps 
along with their respective labeled arrays. 

D. Testing and decision making 
The model evaluation utilizes the test dataset, which 

includes labels. Each test image is projected onto all trained 
maps. We have implemented a multi-BMU technique, where 
instead of identifying just one closest distance, we determine the 
three closest distances per map. These distances are summed for 
each map, and the map with the smallest total distance 
determines the winning map and corresponding group. The three 
node indexes contributing to the decision of the winning group 
are recorded, and the labels associated with these indexes are 
extracted from the array belonging to the winning group. The 
mode of these three labels is then compared against the actual 
label to assess the model's performance. Since each map and 
array represent only two classes, the mode operation 
consistently identifies a clear winner. 

III. EXPERIMENTS 

This section addresses the datasets utilized in the 
experiments, the hyperparameters selection and evaluation 
metrices. The algorithm implementation was carried out in 
Python 3.8.8, utilizing the MiniSOM library for SOM 
calculations within the Keras framework [17]. The experiment 
was conducted on a Core i7-10700 processor without a GPU 
acceleration.  

A. Datasets 
The experiments utilized three datasets: MNIST-digit [18], 

Fashion-MNIST [19] and CIFAR-10 [20]. The data 
characteristics are detailed in Table III. MNIST-digit and 
Fashion-MNIST datasets consist of 8-bit grayscale images 
depicting digits and clothing items, respectively. Both datasets 
have comparable sizes for their training and testing subsets, with 
images uniformly sized at 28 x 28 pixels. In contrast, CIFAR-10 
is a more complex dataset containing 24-bit color images 
representing real-world objects. Each image in CIFAR-10 
measures 32 x 32 pixels, with objects randomly positioned 
within the spatial domain. 

As part of the data preparation, the dataset undergoes 
normalization. Furthermore, the conversion of RGB to grayscale 
is achieved by assigning equal weight to each color channel. No 
additional data processing steps are applied. Training 
exclusively utilizes the clean training dataset. 

For the colored datasets like CIFAR-10, using only the blue 
channel for both training and testing results in a performance 

enhancement of 2 - 2.5% compared to using grayscale or other 
channels. This finding was incorporated into subsequent 
experiments on these datasets, where all operations were 
conducted exclusively using the blue channels. 

 
B. Hyperparameters selection 

The experiments primarily involve two types of 
hyperparameters: 1) Key SOM parameters, as detailed in section 
II, and 2) parameters related to data selection. The SOM 
parameters used in the current experiments are specified in Table 
IV. As the study does not focus extensively on fine-tuning 
hyperparameters and their impact on model performance, they 
undergo moderate tuning and are selected following a few trial-
and-error iterations. 

 
C. Performance metrics 
1. Accuracy: The model's performance is assessed as groups 

are sequentially added to the model, with each addition 
considered a task. Initially, the model begins with only task 
1, where it is trained using the first group of data. Adding 
subsequent groups results in tasks labeled as Nth, 
corresponding to the Nth group. Two types of performance 
metrics are observed:  
1) Task-specific accuracy: it evaluates performance using 

only the test dataset from the current task against all 
previously learned maps [12],  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦௧ ൌ  ଵ
ே೟

 ∑ 𝐴𝐿௡ ∩  𝑃𝐿௡
ே೟
௡ୀଵ   (1) 

Where, 𝑁௧ is the size of the test dataset per task, 𝐴𝐿௡ is 
actual label, 𝑃𝐿௡ is the predicted label over all previous learnt 
maps. 

2) Average accuracy: The performance on task j after 
applying it on all previous task 𝑛௝ is denoted as 𝑎௡ೕ,௝ . The 

average accuracy at task T after testing it on all previous 
tasks from 1 to T-1 is as follows [21]: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦் ൌ  ଵ
்

 ∑ 𝑎௡ೕ,௝
்
௝ୀଵ   (2) 

2. Average Interference: It is defined as the average decrease 
in performance for each task from its highest accuracy to the 
accuracy attained at the end of training, computed as follows: 
[21]: 

𝐹் ൌ  ଵ

்ିଵ
 ∑ 𝑓௝்ିଵ

௝ୀଵ     (3) 

Where, 𝑓௝ is forgetting term for task j. after model is applied 
on task T and is defined as follows: 

𝑓௝ ൌ  max
ఛୀሾଵ,ଶ,…்ሿ

൫𝑎ఛ,௝ െ  𝑎்,௝൯   (4) 

 

TABLE III 
DATASET STATISTICS 

Dataset 
Train 

dataset 
Classes 

Images 
per class 

Test 
dataset 

Size of a 
sample 

Used train 
dataset for 

training 

Used train 
dataset for 
labeling 

Used test 
dataset for 

testing 
MNIST-digit 60000 10 6000 10000 28 x 28 4000 4000 10000 
Fashion-MNIST 60000 10 6000 10000 28 x 28 4000 4000 10000 
CIFAR-10 (RGB) 50000 10 5000 10000 32 x 32 x 3 7000 7000 10000 



TABLE IV 
HYPERPARAMETERS FOR THE PROPOSED STRUCTURE 

Parameter Value 
Class per group 2 
Number of SOM per dataset 5 

SOM Map Size 
15 x 15 x 28 x 28 

15 x 15 x 32 x 32* 
Array size 15 x 15 
Iteration 27000 
Neighborhood radius 1 
Learning rate 0.5 

*Denotes the modification of hyperparameter for CIFAR-10 

IV. RESULTS AND DISCUSSION 

 The model was applied to all three datasets using the 
hyperparameters outlined in Table IV. The accuracy for the task-
specific dataset (Equation 1) and the overall average accuracy 
across all test datasets up to a given task (Equation 2) were 
recorded at each task, as detailed in Table V. With each task, a 
group representing two classes is added to the model, increasing 
the size of the memory bank by one map and one array. During 
the decision-making process at each task, all maps learned thus  
far, including the current one, are considered to determine the 
winning group.  
 A low task-specific accuracy at a particular task indicates 
that the group containing two classes has poorly learned a map, 
which does not emerge as the winner in the decision-making 
process. For instance, Group 5 for MNIST-digit, Group 4 for 
Fashion-MNIST, and Group 3 for CIFAR-10 were identified as 
the worst performers individually. 
 Typically, forgetting occurs when new features learned from 
new data overwrite or modify previously learned information. 
Previous SOM-based studies have employed similar maps to 
accommodate new knowledge or have retrained models using 
previously learned maps as initial weight states. However, in our 
approach, when new data is introduced, learning results in the 
creation of a new map while leaving old maps untouched. 
Consequently, there is technically no forgetting or interference 
during the training process itself. However, during the decision-
making phase, all trained maps must be considered to identify 
the most closely related map to the sample. If multiple maps 
representing classes closely resemble each other, an incorrect 
group might be selected as the winner, which fits the definition 
of "interference." This can lead to a decline in accuracy at each 
task. The performance based average interference or forgetting  

TABLE V 
TASK SPECIFIC ACCURACY OVER PREVIOUSLY LEARNT TASKS 

 MNIST-digit Fashion-MNIST CIFAR-10 
Task 1 100% 97.44% 75.05% 
Task 2 97.55% 92% 47.77% 
Task 3 98.11% 91.16% 25.22% 
Task 4 96.56% 73.16% 35.72% 
Task 5 92.4% 91.33% 37.11% 

AVERAGE ACCURACY OVER PREVIOUSLY LEARNT TASKS 

 MNIST-digit Fashion-MNIST CIFAR-10 
Task 1 100% 97.44% 75.05% 
Task 2 98.78% 94.72% 60.16% 
Task 3 98.55% 93.53% 48.51% 
Task 4 98.06% 83.44% 45.32% 
Task 5 96.92% 84.14% 43.67% 

TABLE VI 
AVERAGE INTERFERENCE AT EACH TASK 

 MNIST-digit Fashion-MNIST CIFAR-10 
Task 1 0.00% 0.00% 0.00% 
Task 2 0.08% 3.68% 7.9% 
Task 3 1.91% 12.22% 13.25% 
Task 4 2.07% 19.48% 36.38% 
Task 5 2.21% 18.19% 39.2% 

(Equation 3) is recorded in Table VI. At the first task, there is 
only one map and no interference in selecting winner group.  
 The results obtained from our study were compared with 
previous SOM-based research. Fig. 3. displays the overall 
average accuracy at each task for MNIST-digit, with numbers 
extracted from relevant papers. Our proposed study achieves the 
highest accuracy throughout all tasks, including the final task 
encompassing all classes. Regarding Fashion-MNIST, we did 
not find specific results from the mentioned studies. However, 
results from previous studies on CIFAR-10 have been plotted 
alongside our proposed study in Fig. 4. DendSOM performs 
better for all tasks due to its effective patch-based learning for 
much diverse CIFAR-10. However, by the end of Task 5, the 
proposed method catches up with DendSOM, suggesting lower 
interference during incremental learning. It is worth noting that 
our proposed approach utilizes a single SOM model, whereas 
DendSOM employs 225 SOM models. Encompassing all 
classes, a single tradition SOM attains an accuracy of 58.95% 
for the MNIST-digit dataset, 52% for Fashion-MNIST, and 
25.7% for CIFAR-10. In contrast, the proposed method achieves 
96.92%, 84.14%, and 43.67% for these datasets, respectively. 
This indicates an improvement in final accuracy by grouping 
over the traditional SOM by 60-70%. 
 In summary, the proposed approach of learning classes in 
groups and storing learned maps in a memory bank effectively 
eliminates the limitation of catastrophic forgetting. By utilizing 
a single SOM that is reinitialized and trained with new data, the 
model achieves higher efficiency and lower computational load 
compared to previous methods. This method also supports 
lifelong learning, where each new group of data adds a map and 
a labeled array to the memory bank for future use. 
   

 
Fig. 3. Average accuracy for MNIST-digit per task 
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Fig. 4. Average accuracy for CIFAR-10 per task 

 
 For groups with additional available data, the SOM can be 
initialized with the existing trained weights and further trained 
with new data to enhance the map for that group. This is crucial 
if a group map performs poorly providing BMUs for own test 
dataset (e.g., Group 4 for Fashion-MNIST). The labeling and 
testing phases only require the trained weights and labels, not 
the entire model itself, which ensures independence between 
training and real-time testing operation parallelly. 
 An additional advantage is that labeled arrays can be 
optimized independently without modifying the weights, 
potentially improving accuracy. One limitation associated with 
the grouping concept is interference in winning group selection. 
As the number of maps increases, traditional distance 
measurement techniques become less effective in accurately 
identifying the correct group, which can result in incorrect 
predictions. To mitigate this issue, we intend to explore the 
implementation of additional metrics alongside Euclidean 
distance to determine the winning nodes. 
 

V. CONCLUSION 

This research presents a back-propagation free, 
unsupervised memory-based approach that utilizes a single Self-
Organizing Map (SOM) as a tool for continuous learning. Unlike 
SOM-based approaches, this method offers several key benefits; 

1. Prevention of Forgetting: Training individual maps helps 
prevent the issue of forgetting. 

2. Separate Testing: This allows the model to learn from 
data while being used in real-time applications. 

3. Efficiency: The model operates faster due to its design. 
The model adjusts to data using multiple maps while 

keeping previously learned maps intact. Each new dataset 
creates a map without impacting existing ones. During testing, 
only the learned maps and labeled arrays are required to predict 
labels, enabling the SOM model to train on available data with 
fresh class labels simultaneously with testing phases. 

This study confirms the effectiveness of group learning 
utilizing a Vanilla SOM, demonstrating substantially faster 
processing times compared to studies that employ multiple 
SOMs and various data processing modifications. Upon 
presenting all classes in the dataset, the proposed methods 
achieved accuracies of 96.92% for MNIST-digit, 84.14% for 
Fashion MNIST, and 43.67% for CIFAR-10, representing an 
improvement of nearly 60-70% over traditional SOM.  

Future research will concentrate on improving class 
selection within each group and introducing methods to improve 
the correct group selections. 
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