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Abstract—With the strong representational power of large
language models (LLMs), generative error correction (GER) for
automatic speech recognition (ASR) aims to provide semantic and
phonetic refinements to address ASR errors. However, the previ-
ous LLM GER method used n-best lists, which are simpler, more
efficient, and more vulnerable to the issue of hypothesis space
collapse. Hypothesis space collapse is a phenomenon in speech
recognition where the range of possible interpretations becomes
too narrow. This paper proposes replacing n-best hypotheses with
lattice, a more flexible ASR output format, to improve the LLM
GER and reduce the likelihood of hypothesis space collapse.
Experiments on CSJ corpus show that compared with using n-
best hypotheses, using lattice can improve the performance of
Japanese speech recognition.

I. INTRODUCTION

Automatic speech recognition (ASR) is one of the most
natural human-machine interfaces for various spoken language
applications. However, various factors, such as background
noise, accents, speech clarity, and the quality of the recording
equipment, always influence ASR results. These influences
can lead to inaccuracies in transcriptions, affecting the overall
effectiveness and reliability of speech recognition systems.

The automatic generative error correction (GER) task uses
pre-trained models to automatically revise and enhance written
content, including documents, articles, and translations. This
process involves correcting grammar, syntax, style, and co-
herence errors and tailoring language to specific requirements
or preferences. GER can effectively refine ASR outputs by
correcting transcription errors. This improves the quality and
usability of transcribed text for applications like captioning,
transcription services, and voice-controlled systems.

Pretrained large neural network-based language models
(LMs) have been applied to GER tasks linked to ASR in recent
years. To lower the substitution error in Mandarin speech
recognition, Zhang et al. [1] suggested a spelling corrector
based on the transformer [2]. The effectiveness of BERT [3]
in identifying spelling errors was enhanced by [4], using the
soft-masking technique as a link between the error detector and
corrector. Using the BERT distilling knowledge, Futami et al.
[5] created soft labels for ASR training. Additionally, certain
studies have been conducted [6], [7] to enhance ASR rescoring
by BERT. Furthermore, BERT has also been effectively used
in multi-modal research in voice-language pretraining [8], [9],
[10] or vision-language pretraining [11], [12], [13], [14].

More recently, Chen et al. [15] proposes combining large
language models (LLMs) into a speech recognition system.
However, n-best lists are more prone to hypothesis space
collapse due to their fixed and limited number of alternatives.
In speech recognition, “hypotheses space collapse” refers to a
phenomenon where the range of possible interpretations of an
input (the hypothesis space) becomes too narrow or restricted.
This can lead to several issues: The system might consider only
a limited set of possible transcriptions, ignoring other possible
alternatives. This can reduce the recognition system’s accuracy
and robustness. As for the n-best list used in [15], once the list
is generated, any transcription not in the top-N hypotheses is
ignored, which can significantly narrow the hypothesis space.
While n-best lists are simpler and more efficient, they are more
vulnerable to hypotheses space collapse due to their limited
representation ability.

Compared to the n-best list, lattices are less likely to
hypothesize space collapse because they maintain a broader
and more flexible representation of possible transcriptions. The
lattice structure allows for more diverse hypotheses, reducing
the likelihood of collapsing the hypothesis space. This paper
addresses the issue of n-best hypotheses and enhances the LLM
GER. As depicted in Figure 1, we replace n-best hypotheses
with lattice, a more compact ASR output format.

II. RELATED WORK

A. LLMs for ASR task

Chen et al. [15] have suggested integrating LLMs into a
voice recognition system more recently. In this research, LLM
is used for second-pass rescoring in the output transcriptions
produced by the ASR system (n-best decoding hypotheses)
for GER error correction. This work presents LoRA [16],
which allows for efficient learning of the n-best to transcription
mapping without affecting the pre-trained parameters of the
LLM. LoRA works by inserting a neural module with a small
number of extra trainable parameters to approximate the full
parameter updates, thereby avoiding the need to tune the entire
set of parameters of a pre-trained model.

By adding trainable low-rank decomposition matrices to the
current layers of LLMs, this technique allows the model to ad-
just to fresh input while maintaining the original LLMs’ fixed
structure to preserve prior knowledge. In particular, LoRA
injects low-rank decomposition matrices to reparameterize



                   

       
      
            
                   

                     
   
     

            
                     
                        
                        
                         
                

         

       

     

     

 

Fig. 1: The flowchart of the proposed LLM GER method using lattice output from ASR system instead of n-best hypotheses.

each model layer, which is described as a matrix multiplication.
The representations produced by the LLM are, therefore, not
warped by task-specific tailoring. Simultaneously, the adapter
module gains the capacity to forecast the actual transcription
based on the n-best estimates. Thanks to effective training,
the method makes use of a large-scale language model that
should be able to comprehend the task description and identify
correlation in the n-best list.

III. IMPROVING LLM GER USING LATTICE FOR ASR

As mentioned in previous work [15], a significant challenge
arises when previous LLM GER fails to yield improvements
at relatively low Character Error Rates (CER). Our proposed
method addresses this issue by enhancing LLM GER. As
depicted in Figure 1, we replace n-best hypotheses with lattice,
a more compact ASR output format (as shown in Figure ??).
In speech recognition, a lattice is a graph representation of
multiple potential word sequences generated during decoding.
It captures various hypotheses of the spoken utterance, allow-
ing for more accurate recognition by considering alternative
paths and word sequences. Lattices are useful for handling
ambiguity and improving recognition accuracy, especially in
noisy or complex speech environments.

LLMs obtain the entire hypothesis space, which is com-
pactly stored in lattice format from the speech recognition
system, and then derive the 1-best hypothesis. In a sense, this
accomplishes the traditional function of a speech recognition
decoder. Therefore, we can say that the LLM is the decoder.

There are two lattice formats in speech recognition and
machine translation areas as follows:

• Kaldi’s lattice format is a representation of possible
transcriptions from speech recognition, structured as

directed acyclic graphs. Each node signifies a point
in time, and each arc between nodes represents a
hypothesized word with associated acoustic scores and
transition probabilities. This format allows for multiple
hypotheses to be stored efficiently, enabling further
processes like rescoring with more sophisticated models
to improve transcription accuracy. These lattices can be
pruned, determinized, and minimized for efficiency.

• The PLF (Python Lattice Format) used in Moses rep-
resents word lattices as directed acyclic graphs with
nodes and edges labeled with words and weights. Nodes
are ordered topologically and assigned numerical IDs,
with edges indicating the word, probability, and distance
between nodes. The format allows efficient decoding of
multiple sentence hypotheses by Moses.

For LLM inferences, the PLF lattice format is generally
more friendly than Kaldi’s native lattice format. This is because
PLF is designed to be easily readable and manipulable using
Python, which is commonly used in LLM development. PLF’s
structure (nodes and edges with word and weight labels) aligns
well with typical data processing pipelines used in LLMs. In
contrast, while efficient for speech recognition tasks, Kaldi’s
format is more complex and less intuitive for direct use with
LLMs, as shown in Figure 2.

IV. EXPERIMENTS

A. Experimental Settings

1. LLM used: The experiment employs the Japanese-Llama-
2-7b model1. The Japanese-Llama-2-7b model is presum-

1huggingface.co/elyza/ELYZA-japanese-Llama-2-7b
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Fig. 2: Convert graph representation of lattice from ASR system to text-based format for LLM (example cited from Moses Users
Manual [17], and the meaning is: a competition-related price drop).

ably a variant of the LLaMA (Large Language Model by
Meta AI) adapted for Japanese language processing.

2. Dataset: We use the “Corpus of Spontaneous Japanese
(CSJ)” [18]. Three official evaluation sets (Eval1, Eval2,
and Eval3), each containing ten lecture recordings [19],
are used to evaluate the speech recognition results.

3. ASR model: We use the very deep resnet tdnn CTC model
(similar to the Chain model in Kaldi) in our previous work
[20], [21] for generating lattice for this paper. For training
ASR models, we use approximately 250 hours of lecture
recordings as the training set (Train APS (academic)) with
similar settings according to other benchmarks [22], [23],
[24], [19].

4. Training LLM GER models: Implementing our LLM
GER models is based on the repository2 for GER task
[25]. For the LLM test set, we extracted each 424 utter-
ances from each Eval1 (2918), Eval2 (3067), and Eval3
(2484). The left Eval1, Eval2, and Eval3 not included in
the LLM test set were gathered and used as our LLM
train set (7197 utterances in total). In CSJ data, the
training is performed on an NVIDIA Tesla A6000 GPU
using 8-bit training. The hyperparameters for finetuning
are 17 epochs, learning rate 1e-4, batch size 64, and
LoRA rank 4. We used an English-Japanese prompt based
on automatic translation following the previous default
English prompt.3

2https://github.com/Hypotheses-Paradise/Hypo2Trans
3We observed roughly lower loss and lower CER trends in English-Japanese

prompt compared to default English prompt (https://github.com/Hypotheses-
Paradise/Hypo2Trans/blob/main/H2T-LoRA/templates/H2T-LoRA.json).

5. Evaluations tool: We use NIST-SCTK to evaluate the
Word Error Rate (WER%).

B. Experimental Results

In this paper, we made four systems for experimental
comparisons as follows:

• 1-best: This is the direct 1-best hypothesis output from
the above-mentioned ASR model in the last subsection.

• N-best: We use the LLM GER method described in
[15] to restore the n-best hypotheses (n=10). The top 10
hypotheses are extracted from the lattice using the default
acoustic weight by the lattice-to-nbest tool 4 of Kaldi.

• Lattice: We use the LLM GER method with the same
setting as the N-best experiments, just replacing the n-
best hypotheses with the PLF-formated lattice hypotheses.
Since the CSJ words are with part-of-speech (POS) and
Katakana pronunciations (Kana), we remove these POS
and Kana from the PLF-format lattice.

• Lattice + POS + Kana: The LLM GER experimental
settings are the same as the Lattice experiment but keep
the POS and Kana from the PLF-format lattice.

Table I shows WERs in each CSJ evaluation set. We
observe that the LLM GER lattice (without POS and Kana)
results improved in eval02 and eval03 and resulted in overall
improvement compared to n-best hypotheses. On the other
hand, there were no improvement in LLM GER lattice with
POS and Kana for leveraging lattice rescoring in LLM. We

4https://kaldi-asr.org/doc/lattice-to-nbest 8cc.html

3



TABLE I: WER in CSJ Eval test sets. Each evaluation data
consists of 424 utterances sampled from the original CSJ
evaluation data.

Eval1 (424) Eval2 (424) Eval3 (424)
1-best 5.6 10.9 10.9
N-best 5.9 10.4 10.9
Lattice 6.0 10.4 10.4
Lattice + POS + Kana 9.4 18.9 12.3
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Fig. 3: The reference length distribution in Eval1, Eval2 and
Eval3.

expect that these tag information became confusion for LLM
model we expect.

C. Further Discussions

1) Performance in each reference length regime: We further
analyze the reason that n-best and lattice-based LLM GER
methods could not outperform the 1-best hypotheses in Eval1.
Figure 3 shows the utterance numbers of Eval1, Eval2 and
Eval3 in each reference length regime. We see that Eval3
consists of relatively shorter sentences compared to Eval1. The
Eval3 has the most number of sentences which are shorter than
10. Figures 4, 5 and 6 show the averaged WER scores in each
reference length regime. These results show that the WERs
were lower for samples when the reference lengths are shorter
than 10 in all evaluation sets. In Eval3 and Eval2, all WER
scores were lower in length regimes shorter than 50. We expect
that recovering errors from long sentences remains challenging
for the LLM GER method. We also expect that using small
LLM (7B) may make the LLM GER more difficult to process
longer inputs because it is trained with data. We expect that
because there are more small size output in Eval2 and Eval3
(especially when the reference length is shorter 10) than Eval1,
the LLM GER lattice results became better in Eval2 and Eval3.

2) Output examples: To see the trends by LLM GER cor-
rection, Table II show some output examples both in proposed
LLM GER lattice and baseline 1-best. In Example 1, 2 and 3,
we see all of the 1-best outputs include error which is caused
by phonetic similarity. These 1-best outputs are not natural
as Japanese and have major problems, such as the lack of
meaning in words. On the other hand, in LLM GER Lattice,
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Fig. 4: WERs in Eval1
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Fig. 5: WERs in Eval2
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Fig. 6: WERs in Eval3

Fig. 7: Averaged WERs in each reference length regimes in
Eval1, Eval2 and Eval3.

we see more recovery with correction and the corrected outputs
became more similar to references. In Example 4, we see
some of unknown tokens were included in 1-best output but
they were converted to correct word. In Eval2, we observed
some of the 1-best outputs included unknown tokens. After
the correction by LLM GER lattice, we observed all of the
unknown tokens were removed or substituted with corrected
words.

3) The advantage for using lattice: We find the process
of the lattice-based data using LLM has a resemblance to the
traditional ASR decoder. Here’s the process within a traditional
decoder for language model rescoring, which involves re-
evaluating the paths in a lattice using more sophisticated
models. The initial decoding uses a simpler language model to
assign scores to different paths in the lattice. In rescoring, these
initial scores are replaced with scores from a more complex,
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TABLE II: Example Japanese sentences in baseline 1-best and proposed LLM GER lattice.

Example 1: Phonetic similar errors (Eval3)
1-best (baseline) えっとニセコの あのっぷり スキー場というところに行ってきました
LLM GER Lattice (proposed) えとニセコの アンヌ スキー場というところに行ってきました
Reference えとニセコの アンヌプリスキー場というところに行ってきました
Example 2: Phonetic similar errors (Eval3)
1-best (baseline) 当然全域 に慣れてない
LLM GER Lattice (proposed) と全然雪 に慣れてない
Reference と全然雪 に慣れてない
Example 3: Phonetic similar errors (Eval2)
1-best (baseline) 今回はディバイドと呼ばれる周波数 へへん環境 を用いた為に周波数および
LLM GER Lattice (proposed) 今回はディバイドと呼ばれる周波数 変換 を用いた為に周波数および
Reference 今回はディバイダーと呼ばれる周波数 変換 器を用いた為に周波数および
Example 4: Correcting unknown tokens (Eval2)
1-best (baseline) 関係してきてるのではないでしょ <UNK> <UNK> <UNK> <UNK> か
LLM GER Lattice (proposed) 関係してきてるのではないでしょ う か
Reference 関係してきてるのではないでしょ う か

typically larger, language model (i.e., LLM in this paper). The
words with new scores reflect a more accurate evaluation of
word sequences, improving overall transcription accuracy.

To sum up, the method we proposed in this paper leverages
the strengths of advanced LLMs to refine the transcription out-
put by reassessing the probabilities of more diverse hypotheses
in the lattice.

V. CONCLUSION

This paper proves that using LLM-based GER can directly
work on lattice-structured output from the speech recognition
system. Experiments on CSJ corpus show that compared
with using n-best hypotheses, using lattice can improve the
performance of Japanese speech recognition. In the future, we
will conduct more experiments to demonstrate the method’s
effectiveness in a broader range of settings.
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