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Abstract—Due to incomplete information in financial markets,
asset returns and volatility are generally not observable to normal
investors. To address this issue, normal investors can use historical
price data to estimate these parameters. In this process, they
often exhibit bounded rationality, demonstrating their limited
cognitive and information-processing capabilities. Also, given the
investment expertise of experts, normal investors can refer to
and align with the experts’ decisions, which is called the herd
effect. To better understand normal investors’ behaviors, in
this work, we modify the general market parameter estimation
methods and propose sliding window-based estimation methods to
model their bounded rationality. We then formulate the optimal
investment problem, which involves one expert and one normal
investor whose decisions are influenced by the expert, and jointly
consider incomplete information and the herd effect. We derive
the analytical solution for the normal investor’s optimal decision
and theoretically analyze the influence of bounded rationality,
incomplete information, and herd effect on his/her decisions. We
validate our analysis using numerical experiments on real data.

I. INTRODUCTION

In financial markets, investors allocate assets offering high
returns and low volatility to maximize their expected utility
of terminal wealth over the investment period [1]. However,
the asset returns and volatility are generally not observable for
normal investors due to incomplete information [2]. Normal
investors can use price data to derive optimal estimates of the
returns and volatility [3]. Additionally, with their expertise
in accessing and interpreting market information, experts’
decisions offer valuable insights into the returns and volatility
[4]. When experts anticipate high returns or low volatility, they
are more likely to buy the asset, and vice versa. Therefore,
normal investors can also refer to and align with the experts’
decisions, known as the herd effect [5]. To better understand
normal investors’ behaviors and devise effective mechanisms
to guide their decisions, we first need to study how incomplete
information and herd effect influence their decisions.

There exists extensive research on estimating asset returns
and volatility with incomplete information. The CAPM [6] and
the GARCH model [7] are two classic models for estimat-
ing the return and volatility, respectively. The Black-Scholes
model simultaneously considers the returns and volatility [8],
based on which, the work in [9] provides general methods
to jointly estimate the returns and volatility. However, these
methods assume that normal investors are fully rational and
use all available data for estimation. In reality, normal investors
often exhibit bounded rationality with limited cognitive and
information-processing capabilities. Due to bounded rational-

ity, they tend to focus on price data within a specific timeframe
[10]. To better model their behavior, it is crucial to incorporate
bounded rationality into the estimation methods.

Additionally, there have been many qualitative analyses
confirming the significant influence of herd effect on invest-
ment decisions [11], and our prior work in [12] quantitatively
studied the influence of herd effect on the normal investors’
decision. However, these studies assume complete information
in financial markets and ignore parameter estimation.

In the literature, there are limited works that jointly consider
the influence of incomplete information and herd effect on nor-
mal investors’ decisions. In this work, we address this problem
by formulating an optimal investment problem involving one
expert and one normal investor. Following the work in [1],
we assume that the expert makes rational decisions. For the
normal investor, at each time step, we assume that he/she first
estimates the asset return and volatility with bounded ratio-
nality. Then, he/she makes the optimal decision to maximize
the expected utility of the estimated terminal wealth while
minimizing the distance between the two investors’ decisions
due to the herd effect. Finally, the normal investor updates
his/her wealth and repeats the above estimation and decision-
making process for the next time step.

The rest of this paper is organized as follows. In Section II,
we propose sliding window-based market parameter estimation
methods considering bounded rationality, and formulate the op-
timal investment problem for the normal investor, which jointly
considers incomplete information and herd effect. In Section
III, we derive the analytical solution of the normal investor’s
optimal decision and quantitatively analyze the influence of
bounded rationality, incomplete information, and herd effect
on normal investor’s decisions. In Section IV, we conduct
numerical experiments on a real asset dataset to validate our
analysis. Section V is the conclusion.

II. PROBLEM FORMULATION

In this section, we first define the problem, introduce the
expert’s rational decision, and extend the general estimation
methods for the asset returns and volatility considering the
normal investor’s bounded rationality. Then, we formulate the
optimal investment problem for the normal investor.

The important notations used in this work are in Table I.

A. Problem Definition
Following the work in [1], we consider the financial mar-

ket with one risk-free asset and one risky asset. Extend-



TABLE I
NOTATIONS

Notation Meaning Notation Meaning
r Interest rate µ Return
v Excess return σ Volatility

α1, α2 Risk aversion coefficients T , T Investment period
N Sample size µ̂ Estimated return
v̂ Estimated excess return σ̂ Estimated volatility
w Sliding window width θ Herd coefficient
X1 Wealth ϕ Utility function
ρ Decay rate D Average deviation
η Integral constant Z1 Opinion

Notation Meaning
ˆ̄P1 Rational decision with incomplete information (IRD)

P̄1, P̄2 Rational decision with complete information (CRD)
P ∗
1 Optimal decision (OPD)

ing this analysis to encompass multiple assets is straight-
forward. We denote the investment period as T := [0, T ].
Let (Ω,F , {F (t)}t∈T ,P) be a complete probability space on
which a standard Brownian motion {B(t)}t∈T with B(0) = 0
is defined. We utilize {B(t)}t∈T to model the randomness of
the risky asset price. The market parameters include the interest
rate r of the risk-free asset, the return µ, and the volatility σ
of the risky asset. Furthermore, we define the excess return of
the risky asset over the risk-free asset as

v := µ− r > 0. (1)

Typically, investors can easily access the current interest
rates from bank counters or websites. Following the work in
[1], we assume that both the normal investor and the expert can
obtain the true value of r. Compared to the risk-free asset, the
risky asset exhibits a higher return and comes with volatility.
Following the work in [1], we assume the price process of
the risk-free asset {S(t)}t∈T satisfies a geometric Brownian
motion (GBM), and we assume that the expert can obtain the
true values of µ and σ during the whole investment period due
to their investment expertise. Conversely, the normal investor
needs to estimate µ and σ at each time t from {S(u)}u∈[0,t],
denoted as µ̂(t) and σ̂(t), respectively.

We use subscripts i = 1, 2 to denote the normal investor and
the expert, respectively. We define the i-th investor’s decision
{Pi(t)}t∈T as the wealth invested in the risky asset. Following
the work in [1], given the true values of r, v, and σ, the
expert’s rational decision with complete information (CRD)
{P̄2(t)}t∈T without considering other’s influence is

P̄2(t) :=
v

α2σ2
er(t−T ), t ∈ T , (2)

where α2 > 0 is called the expert’s risk aversion coefficient
[13], and a larger α2 indicates that he/she is less risk-taking.

The normal investor’s decision process is in Fig. 1. At each
time t, the normal investor with wealth X1(t) first estimates
v̂(t) and σ̂(t) using historical price data {S(u)}u∈[0,t]. Then,
he/she makes the optimal decision (OPD) {P ∗

1 (u)}u∈[t,T ] to
maximize the expected utility of the estimated terminal wealth
(EUETW) Etϕ(X̂1(T )) while minimizing the distance between
his/her decision and that of the expert Dt(P1, P̄2), which we
call the average deviation. Finally, he/she invests P ∗

1 (t) in the
risky asset and X1(t)− P ∗

1 (t) in the risk-free asset at time t,

Calculate the wealth 𝑋! 𝑡

Estimate the market parameter 𝑣$ 𝑡 , 𝜎$ 𝑡

Derive the expected utility of estimated terminal wealth 𝔼𝜙 𝑋)! 𝑇

Estimate the terminal wealth 𝑋)! 𝑇

Define the average deviation 𝐷" 𝑃!, 𝑃-#

Solve the optimal decision 𝑃!∗ 𝑢 %∈ ",(

Fig. 1. The normal investor’s decision process.

and then proceeds to the next time step t + dt and updates
his/her wealth X1(t+ dt) using P ∗

1 (t) and S(t).

B. Market Parameter Estimation Methods
1) The general estimation methods: Based on the statistical

properties of GBM, the work in [9] provides the following
two general estimation methods for the market parameters. To
simplify the notation, we denote N as the sample size of the
GBM and denote the sample value at sample point n as

Sn(t) := S
( n

N
t
)
, n = 0, . . . , N. (3)

General Method Using Differences (GEM-diff ): GEM-
diff is based on the probability distribution of the difference
between successive observations, i.e., Sn(t) − Sn−1(t), n ∈
{1, . . . , N}, and the maximum likelihood estimators (MLEs)
of µ̂GEM

diff (t) and σ̂GEM
diff (t) at time t are

µ̂GEM
diff (t) =

1

t

N∑
n=1

Sn(t)− Sn−1(t)

Sn−1(t)
, and (4)

σ̂GEM
diff (t) =

√
1

t

N∑
n=1

[
Sn(t)− Sn−1(t)

Sn−1(t)
− t

N
µ̂GEM
diff (t)

]2
.

General Method Using Ratios (GEM-ratio): GEM-ratio
is based on the probability distribution of the ratio between
successive observations, i.e., Sn(t)/Sn−1(t), n ∈ {1, . . . , N},
and the MLEs of µ̂GEM

ratio (t) and σ̂GEM
ratio (t) at time t are

µ̂GEM
ratio (t) =

1

t
ln

S(t)

S(0)
+

[σ̂GEM
ratio (t)]

2

2
, and (5)

σ̂GEM
ratio (t) =

√
1

t

N∑
n=1

[
ln

Sn(t)

Sn−1(t)
− 1

N
ln

S(t)

S(0)

]2
.

These two general estimation methods assume that normal
investors are fully rational and use all historical price data
{S(t)}t∈T when estimating µ and r. To model their bounded
rationality, we modify these methods and propose the follow-
ing sliding window-based methods.

2) The sliding window-based methods: From [10], investors
often focus on price data within a certain timeframe. Thus,
we assume a sliding window with width w < t, and the
estimators only use {S(u)}u∈[t−w,t]. We denote the sample
value at sample point n with sliding window width w as

Sw
n (t) := S

(nw
N

+ t− w
)
, n = 0, . . . , N. (6)



TABLE II
THE MEAN AND VARIANCE OF DIFFERENT ESTIMATORS

µ̂(t) Eµ̂(t) Dµ̂(t)
µ̂GEM
diff (t) in (4) µ σ2

t

µ̂SWM
diff (t) in (5) µ σ2

w

µ̂GEM
ratio (t) in (7) µ− σ2

2N
σ2

t
+

(N−1)σ4

2N2

µ̂SWM
ratio (t) in (8) µ− σ2

2N
σ2

w
+

(N−1)σ4

2N2

σ̂2(t) Eσ̂2(t) Dσ̂2(t)

[σ̂GEM
diff (t)]2 in (4), [σ̂SWM

diff (t)]2 in (5), N−1
N

σ2 2(N−1)σ4

N2[σ̂GEM
ratio (t)]2 in (7), [σ̂SWM

ratio (t)]2 in (8)

Based on GEM-diff/ratio, we propose the Sliding Window-
Based Method Using Differences (SWM-diff ), where

µ̂SWM
diff (t) =

1

w

N∑
n=1

Sw
n (t)− Sw

n−1(t)

Sw
n−1(t)

, and (7)

σ̂SWM
diff (t) =

√
1

w

N∑
n=1

[
Sw
n (t)− Sw

n−1(t)

Sw
n−1(t)

− w

N
µ̂SWM
diff (t)

]2
,

and the Sliding Window-Based Method Using Ratios (SWM-
ratio), where

µ̂SWM
ratio (t) =

1

w
ln

S(t)

S(t− w)
+

[σ̂SWM
ratio (t)]2

2
, and (8)

σ̂SWM
ratio (t) =

√
1

w

N∑
n=1

[
ln

Sw
n (t)

Sw
n−1(t)

− 1

N
ln

S(t)

S(t− w)

]2
.

Detailed derivations of (7)–(8) are in the supplementary file.
3) Comparison of different estimation methods: We theoret-

ically analyze the statistical properties of the above estimation
methods. The mean and the variance of different estimators,
in (4)–(8) are in Table II. We use EX and DX to denote the
mean and variance of an estimator X . The proofs are in the
supplementary file. Note that it is challenging to derive Eσ̂(t)
and Dσ̂(t), so we analyze Eσ̂2(t) and Dσ̂2(t) instead.

From Table II, for the estimation of µ, µ̂GEM
diff (t) and

µ̂SWM
diff (t) are unbiased, while µ̂GEM

ratio (t) and µ̂SWM
ratio (t) are bi-

ased. This suggests that estimating the return using differences
gives higher accuracy than ratios. Furthermore, when studying
the variance of different estimators, we have Dµ̂GEM

diff (t) <
Dµ̂SWM

diff (t) and Dµ̂GEM
ratio (t) < Dµ̂SWM

ratio (t), which suggests that
estimating the return with bounded rationality results in higher
uncertainty compared to the scenario with full rationality.

Additionally, from Table II, for the estimation of σ2, the
mean and the variance of different estimators are the same,
which suggests that a bounded rational normal investor’s
estimation of volatility is as accurate and certain as those
of fully rational investors. As the sample size N approaches
infinity, Eσ̂2(t) converges to the true value σ2, and Dσ̂2(t)
approaches zero. Therefore, σ̂2(t) consistently converges to
σ2, i.e., limN→∞ P(σ̂2(t) = σ2) = 1, and in this case, the
normal investor can almost surely obtain the true value of
σ2. In summary, the accuracy and uncertainty of volatility
estimation depend on the sample size and are independent of
whether the investor is bounded rational or not.

4) Summary: We assume that the expert can acquire the
true values of r, µ, v, and σ, while the normal investor can
acquire the true value of r, and use (4)–(9) to estimate µ and
σ for t ∈ T . In the following, when not referring to a specific
estimator, we simplify the notation by using µ̂(t) and σ̂(t) to
denote the estimated parameters in general. We will specify
each estimator when comparing their performances. From (1),
the MLE of the excess return v̂(t) at time t is

v̂(t) = µ̂(t)− r. (9)

C. The Normal Investor’s Optimal Investment Problem
Next, we analyze the normal investor’s wealth, the EUETW,

and the average deviation, and formulate the problem.
1) The wealth: Following the work in [1], at time t, given

the historical price data {S(u)}u∈[0,t] and the normal in-
vestor’s historical OPD {P ∗

1 (u)}u∈[0,t], his/her wealth process
{X1(u)}u∈[0,t] satisfies

dX1(u) = r[X1(u)− P ∗
1 (u)]du+

P ∗
1 (u)

S(u)
dS(u), (10)

subject to X1(0) = x1, where x1 is his/her initial wealth.
2) The EUETW: Following the work in [1], at time t, given

the market parameter estimates µ̂(t), v̂(t), and σ̂(t), the normal
investor estimates that his/her wealth {X̂1(u)}u∈[t,T ] satisfies

dX̂1(u) = [rX̂1(u) + v̂(t)P1(u)]du+ σ̂(t)P1(t)dB(u), (11)

subject to X̂1(t) = X1(t), if he/she allocates {P1(u)}u∈[t,T ]

to the risky asset. Based on (11), the normal investor chooses
his/her optimal decision {P ∗

1 (u)}u∈[t,T ] to maximize his/her
EUETW. The utility function ϕ(X̂1(T )) satisfies the charac-
teristics of the diminishing marginal returns and concavity.
Following the work in [13], we consider the following form:

ϕ(X̂1(T )) := − 1

α1
e−α1X̂1(T ), (12)

where α1 > 0 is the normal investor’s risk aversion coefficient.
3) The average deviation: Following our prior work in [12],

we use the average deviation to measure the distance between
the two investors’ decisions. At time t, the average deviation
between the normal investor’s decision {P1(u)}u∈[t,T ] and the
expert’s CRD {P̄2(u)}u∈[t,T ] is

Dt(P1, P̄2) :=
1

2

∫ T

t

eρr(T−u)[P1(u)− P̄2(u)]
2du, (13)

where ρ ⩾ 0 is the decay rate. A larger ρ implies that
deviations occurring later carry less weight. When ρ = 0,
deviations for all times are equally weighted.

4) Optimal investment problem: In summary, the optimal
investment problem for the normal investor at time t becomes

sup
Ut∋{P1(u)}u∈[t,T ]

Etϕ(X̂1(T ))− θDt(P1, P̄2) (14)

s.t. dX̂1(u) = [rX̂1(u) + v̂(t)P1(u)]du+ σ̂(t)P1(t)dB(u),

dX1(u) = r[X1(u)− P ∗
1 (u)]du+

P ∗
1 (u)

S(u)
dS(u),

X̂1(t) = X1(t), X1(0) = x1,



where Ut represents the set of admissible decisions, which is a
subset of L1

t (T ) :=
{
{P (u)}u∈[t,T ]

∣∣∣E ∫ T

t
|P (u)|du < +∞

}
.

The herd coefficient θ > 0 is to address the tradeoff
between the two different objectives, i.e., maximizing the
EUETW Etϕ(X̂1(T )) and minimizing the average deviation
Dt(P1, P̄2). Specifically, as θ approaches infinity, the normal
investor copies the expert’s CRD:

lim
θ→+∞

P ∗
1 (t) = P̄2(t), t ∈ T . (15)

When θ = 0, the normal investor’s OPD is entirely indepen-
dent of the expert’s decision, and becomes the rational decision
using the estimated v̂(t) and σ̂(t), i.e.,

ˆ̄P1(t) := lim
θ→0

P ∗
1 (t) =

v̂(t)

α1σ̂2(t)
er(t−T ), t ∈ T , (16)

which we call the normal investor’s rational decision with
incomplete information (IRD). Furthermore, we define the
normal investor’s CRD, i.e., the rational decision using the
true values of v and σ as

P̄1(t) :=
v

α1σ2
er(t−T ), t ∈ T . (17)

From (16) and our prior work in [12], we have

{ ˆ̄P1(t)}t∈T = argmaxU0∋{P1(t)}t∈T
E0ϕ(X̂1(T )), and (18)

{P̄1(t)}t∈T = argmaxU0∋{P1(t)}t∈T
E0ϕ(X1(T )). (19)

That is, the IRD { ˆ̄P1(t)}t∈T maximizes the expected utility
of the estimated terminal wealth X̂1(T ) calculated using (11),
while the CRD {P̄1(t)}t∈T maximizes the expected utility of
the real terminal wealth X1(T ) calculated using (10). From
the work in [1], the normal investor’s objective is to maximize
E0ϕ(X1(T )). However, due to incomplete information, the
normal investor can only obtain X̂1(T ) but not X1(T ) in
the decision-making process. From (16) and (17), when the
estimators v̂(t) and σ̂(t) are more accurate and certain, the IRD
{ ˆ̄P1(t)}t∈T aligns better with the CRD {P̄1(t)}t∈T , and the
normal investor’s expected utility of the real terminal wealth
E0ϕ(X1(T )) increases. As mentioned above, the presence of
bounded rationality in estimators leads to higher uncertainty,
which in turn diminishes the expected utility of the real
terminal wealth.

III. PROBLEM SOLUTION AND ANALYSIS

In this section, we derive the analytical solution of the
normal investor’s OPD in (14) and theoretically analyze the
influence of incomplete information and herd effect on the
normal investor’s OPD. To simplify the notation, we denote

ϑ(t) :=
θ

α1σ̂2(t)
, and ϱ := 2− ρ (20)

as the modified herd coefficient and the modified decay rate,
respectively. All proofs are in the supplementary file.

A. The Normal Investor’s Optimal Decision

Theorem 1. The optimal decision {P ∗
1 (t)}t∈T in (14) is

P ∗
1 (t) =

η(t)v̂(t)e(ϱ−1)r(T−t) + θP̄2(t)

η(t)α1σ̂2(t)eϱr(T−t) + θ
, t ∈ T , (21)

where the integral constant η(t) is defined as

η(t) := −α1Etϕ(X̂1(T )) = exp
{
−α1X1(t)e

r(T−t) (22)

− v̂2(t)(T − t)

2σ̂2(t)
+

∫ T

t

ϑ2(t)v̂2(t)[λα1σ̂
2(t)/v̂(t)− 1]2du

2σ̂2(t)[η(t)eϱr(T−u) + ϑ(t)]2

}
,

and his/her wealth process {X1(t)}t∈T is

X1(t) = x1e
rt+

∫ t

0

η(u)v̂(u)eϱr(T−u) + λθ

η(u)α1σ̂2(u)eϱr(T−u) + θ

(
dS(u)

S(u)
− rdu

)
,

(23)
where the portfolio parameter λ := v

α2σ2 ≡ P̄2(t)e
r(T−t) for

t ∈ T can be calculated from the expert’s CRD [14].

Note that it is challenging to derive the closed-form solution
of the normal investor’s OPD due to the complexity of (21),
(22), and (23). To address this problem, we provide a numerical
method. We discretize the investment period into several subin-
tervals, each of which has a length of τ , which satisfies that
M := T/τ is an integer, i.e., T =

⋃M
i=1[(i− 1)τ, iτ ]. Starting

from the initial time with a given initial wealth X1(0) = x1,
we first estimate the market parameters µ̂(τ) and σ̂(τ), and
solve for the integral constant η(τ) using (22). Note that when
τ is sufficiently small, we can approximate X1(τ) as X1(0)
in (22), i.e.,

η(τ) ≈ exp

{
−α1X1(0)e

r(T−τ) − v̂2(τ)(T − τ)

2σ̂2(τ)

+

∫ T

τ

ϑ2(τ)v̂2(τ)[λα1σ̂
2(τ)/v̂(τ)− 1]2du

2σ̂2(τ)[η(τ)eϱr(T−u) + ϑ(τ)]2

}
. (24)

Then, we calculate the OPD P ∗
1 (τ) and wealth X1(τ) using

(21) and (23), respectively. We iteratively calculate v̂(iτ),
σ̂(iτ), η(iτ), P ∗

1 (iτ), and X1(iτ), for i ∈ {2, . . . ,M}, until
reaching the terminal time T .

B. Influence of Incomplete Information and Herd Effect on the
Normal Investor’s Optimal Decision

Due to the complexity of (21), it is challenging to theo-
retically analyze the influence of incomplete information and
herd effect on the OPD. Note that the normal investor’s IRD
in (16) reflects the influence of incomplete information, while
the expert’s CRD in (2) reflects the influence of herd effect.
Therefore, we can decompose the normal investor’s OPD into
his/her IRD and the expert’s CRD, and use the weight function
to measure the influence of incomplete information and herd
effect on the OPD. Following our prior work in [12], the
normal investor’s OPD in (21) is a convex linear combination
of his/her IRD and the expert’s CRD.



Theorem 2. The normal investor’s optimal decision
{P ∗

1 (t)}t∈T in (14) is a convex linear combination of the two
investors’ rational decisions { ˆ̄P1(t)}t∈T and {P̄2(t)}t∈T , i.e.,

P ∗
1 (t) = Z1(t)

ˆ̄P1(t) + [1− Z1(t)]P̄2(t), t ∈ T , (25)

where the weight function {Z1(t)}t∈T is

Z1(t) =
η(t)eϱr(T−t)

η(t)eϱr(T−t) + ϑ(t)
∈ [0, 1], t ∈ T . (26)

From (25), {Z1(t)}t∈T measures the extent to which the
normal investor adheres to his/her IRD. A larger {Z1(t)}t∈T
indicates that the normal investor’s OPD aligns more with
his/her IRD. Conversely, a smaller {Z1(t)}t∈T indicates a
preference for aligning with the expert’s CRD rather than
relying on his/her market parameter estimates when making
decisions. Thus, we define {Z1(t)}t∈T as the normal investor’s
opinion to measure the influence of estimations with incom-
plete information and herd effect on the OPD.

From (20), ϑ(t) is proportional to θ. A larger θ indicates
a higher level of herd effect, and the normal investor is more
inclined to the experts’ CRD when making decisions. In this
case, from (26), the opinion {Z1(t)}t∈T will decrease, and
from (25), the normal investor’s OPD {P ∗

1 (t)}t∈T will align
more with the expert’s CRD {P̄2(t)}t∈T .

From (22), η(t) is negatively proportional to the EUETW
Etϕ(X̂1(T )). Considering the characteristics of the diminish-
ing marginal returns of the utility function, if the EUETW
Etϕ(X̂1(T )) is smaller, i.e., the integral constant η(t) is larger,
the normal investor is more motivated to increase his/her
EUETW. In this case, from (26), the opinion {Z1(t)}t∈T
will increase, and thus from (25), the normal investor’s OPD
{P ∗

1 (t)}t∈T will align more with his/her IRD { ˆ̄P1(t)}t∈T , and
he/she is more inclined to estimate the return and volatility
himself/herself from historical price data.

IV. NUMERICAL EXPERIMENTS

In this section, we validate our proposed estimation methods
and the analysis of the normal investor’s OPD in Section II
and Section III using numerical experiments.

A. Comparison of Different Estimation Methods

We consider a time frame spanning fifty years from 1974
to 2023, i.e., T = 50. We set the true values of the return and
the volatility as µ = 0.07 and σ = 0.16 according to the Dow
Jones Industrial Average [15]. We generate 500 trajectories
following the GBM with µ = 0.07 and σ = 0.16. We use
all the mentioned methods, including GEM-diff, GEM-ratio,
SWM-diff , and SWM-ratio, to estimate µ̂(t) and σ̂(t), and we
compare their performance. We set N = 1, 000 and w = 3,
and observe the same trend for other values of N and w.

Fig. 2 shows the estimated return and volatility averaged
over 1, 000 simulation results, and we also plot the true values
of the return and volatility for comparison. The curves of
SWM-diff and SWM-ratio in Fig. 2 overlap almost completely.
From Fig. 2, when t ∈ [0, 20), the accuracy of parameter

estimation across all methods is relatively low due to limited
data. Therefore, in the following experiment, we assume that
during t ∈ [0, 20), the normal investor observes data only,
while during t ∈ [20, T ], he/she observes data and makes de-
cisions. This assumption also satisfies our problem formulation
in Section II, which is explained in the supplementary file.

When t ∈ [20, T ], for the return, the estimators of
GEM-diff/ratio exhibit lower uncertainty than those of SWM-
diff/ratio. It indicates that a bounded rational investor has
higher uncertainty in estimating the return than a fully ratio-
nal investor. Additionally, it can be observed that µ̂GEM

diff (t)
is closer to the true value of µ than µ̂GEM

ratio (t). Therefore,
estimating the return using differences and with full rationality
leads to higher accuracy and certainty than using ratios and
with bounded rationality, respectively. For the volatility, the
four estimators demonstrate comparable performance. In the
supplementary file, we show that as the sample size increases,
the estimator of volatility has higher accuracy and certainty.
The above results verify our analysis in Section II.

B. Influence of Bounded Rationality on the Normal Investor’s
Rational Decision and Expected Utility

Next, we simulate the influence of bounded rationality on
the IRD. We set T = 50, µ = 0.07, and σ = 0.16 as mentioned
above. The interest rate r is approximated as 0.04 using the
daily average of U.S. 1-Year T-Bills’ interest rates in 2022 and
2023 [16]. Following our prior work in [12], we set the normal
investor’s risk aversion coefficient as α1 = 0.2. Note that the
initial wealth can be any positive number [14], and we set x1 =
1 as an example. We set the sliding window width w as 10 and
20. A larger w indicates that the level of bounded rationality is
weaker, and thus the estimation method is less uncertain. We
observe the same trend for other values of the parameters. We
repeat the experiment 1, 000 times. We calculate the IRD and
the CRD using (16) and (17), and their corresponding expected
utilities of the real terminal wealth E0ϕ(X1(T )) using (23) by
averaging ϕ(X1(T )) in all experiments.

We analyze the influence of bounded rationality on the
normal investor’s IRD in the supplementary file. The exper-
iment results show that when the estimation method is more
accurate, the IRD aligns better with the CRD. Table III shows
the expected utility of the real terminal wealth with different
estimation methods. From Table III, we can observe that
the expected utility with complete information of µ and σ
is the highest, and among all estimators, GEM-diff achieves
the highest expected utility due to its highest accuracy and
certainty; while SWM-ratio (w = 10) gives the lowest expected
utility as its accuracy and certainty are the lowest. The above
results verify our analysis in Section II.

C. Influence of Incomplete Information and Herd Effect on the
Normal Investor’s Optimal Decision

Next, we simulate the influence of incomplete information
and herd effect on the OPD. Apart from the aforementioned
parameters, we set the expert’s risk aversion coefficient as
α2 = 0.4 and the decay rate as ρ = 2. We let the herd
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Fig. 2. Comparison of different estimation methods: the estimated return µ̂(t) and the estimated volatility σ̂(t).

TABLE III
INFLUENCE OF BOUNDED RATIONALITY ON THE NORMAL INVESTOR’S EXPECTED UTILITY OF THE REAL TERMINAL WEALTH

Estimation method CRD GEM-diff GEM-ratio SWM-diff (w = 20) SWM-ratio (w = 20) SWM-diff (w = 10) SWM-ratio (w = 10)
E0ϕ(X1(T )) −3.9137 −4.3601 −4.3643 −4.6937 −4.6950 −6.7842 −6.7980

coefficient θ be 10−4, 10−3, and 10−2. We observe the same
trend for other values of the parameters. We assume that the
normal investor estimates the market parameters using GEM-
diff, and calculates the OPDs and opinions using Theorem 1
and Theorem 2. The experiment results are in the supplemen-
tary file, which show that as the herd coefficient increases, the
normal investor’s OPD aligns more with the expert’s CRD
and deviates further from his/her IRD, and his/her opinion
decreases, which verifies Theorem 2.

V. CONCLUSION

In this work, we formulate the optimal investment problem
jointly considering incomplete information and the herd effect
and derive the normal investor’s optimal decision. We modify
the general market parameter estimation methods and propose
the sliding window-based methods considering bounded ratio-
nality. Our theoretical analysis shows that while the estimation
of the return is more uncertain with bounded rationality,
the uncertainty of volatility estimation remains unchanged.
As parameter estimation methods become more accurate and
certain, the normal investor’s rational decision with incomplete
information converges to that with complete information, lead-
ing to a higher expected utility of real terminal wealth. As the
herd effect intensifies, the normal investor’s optimal decision
aligns more with the expert investor’s decision and diverges
from his/her own rational decision.
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