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Abstract—Accent classification or AC is a task to predict the
accent type of an input utterance, and it can be used as a
preliminary step toward accented speech recognition and accent
conversion. Existing studies have often achieved such classification
by training a neural network model to minimize the classification
error of the predicted accent label, which can be obtained as
a model output. Since we optimize the entire model only from
the perspective of classification loss during training time in this
approach, the model might learn to predict the accent type from
irrelevant features, such as individual speaker identity, which
are not informative during test time. To address this problem,
we propose a GE2E-AC, in which we train a model to extract
accent embedding or AE of an input utterance such that the AEs
of the same accent class get closer, instead of directly minimizing
the classification loss. We experimentally show the effectiveness of
the proposed GE2E-AC, compared to the baseline model trained
with the conventional cross-entropy-based loss1.

I. INTRODUCTION

Accent is one of the major non-linguistic factors of speech.
To alleviate the performance degradation in speech recognition
caused by different accents (e.g., English, American, and
Scottish), a potential solution is to first classify the accent type
of an input utterance and then use an accent-specific speech
recognition model that has been trained for the predicted accent
[1]–[3]. Such a task to classify an accent type of a given
utterance is called accent classification (AC), and various data
sets have been publicly available for AC which contain the
accent labels of the utterances as well as the speaker ones
[4]–[6].

Existing AC models are typically trained to minimize a loss
function (e.g., cross-entropy or CE loss) between the target
and predicted accent labels [7]–[9]. We will call this approach
CE-AC (Fig. 1 (a)). While this approach directly optimizes
the model’s classification accuracy during training, it may
lead to predictions that capture irrelevant information (e.g.,
speaker identity) from the input utterance to reduce the training
loss, ultimately degrading test performance. This has also been
pointed out in [10]. Moreover, CE-based approach is based on
the implicit assumption that the set of potential accent types
of input utterances is fixed. To utilize an additional data set
with the accent types that have not been in the previous data
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set, a different model with a new output size must be retrained
from scratch.

To address these limitations, we propose adapting the con-
cept of generalized end-to-end (GE2E) loss training [11],
which has proven highly effective in speaker verification tasks,
for use in the AC task. Specifically, instead of training a model
to directly minimize the error in the predicted accent class,
we train it to extract accent embeddings (AEs), i.e., feature
vectors representing accent information, from input utterances
so that the AEs of the same accent class get closer, while
those of different accent classes move farther apart. We call
this approach GE2E-AC (Fig. 1 (b)).

This approach has the advantage that even when a test
sample with an unknown accent comes in, it can determine
which training sample is most similar. Additionally, it is easy
to retrain without needing to modify the model structure. Our
experiments show that this method is more effective for the AC
task compared to the conventional CE-based baseline method.
In the experiment, we also compared the basic GE2E-AC with
GE2E-AC-A, which incorporates the additional adversarial
speaker classification loss to further eliminate the speaker
identity information from extracted AEs. Furthermore, since
the optimal input for the AC task is not obvious, we also
evaluated the performance of using phoneme-related bottle-
neck features (BNFs) [12] extracted from an encoder-decoder
type automatic speech recognition (ASR) system and Hidden-
Unit BERT (HuBERT) [13] features as inputs.

II. BASELINE METHOD: CE-BASED ACCENT
CLASSIFICATION

Before we explain the proposed GE2E-based AC, we first
describe a baseline CE-AC. In this approach, we use accent
classifier fCE : RT×F 7→ RC which maps input feature
X ∈ RT×F (e.g., BNF [12] and HuBERT [13]) of an utterance
to vector ŷ = fCE(X) ∈ [0, 1]C , where T , F , and C
indicate the numbers of time and frequency bins of an input
feature and accent types, respectively. Throughout this paper,
we assume that classifier fCE is modeled as a neural network.
By assuming that output vector ŷ represents the probabilities
of categorical distribution on the accent types, we train the
entire network fCE by minimizing the CE loss LCE between
the model output ŷ and the target accent label in one-hot
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Fig. 1. The network architectures of (a) the baseline CE-based and (b) the proposed GE2E-based accent classification. For arbitrary vector ϕ ∈ RK , Context(ϕ)

indicates a function fϕ : RT×F ′ 7→ RT×KF ′
, which maps matrix X ∈ RT×F ′

to fϕ(X) =
[
M(1)X, · · · ,M(K)X

]
, where M(k) ∈ RT×T is a matrix

each of whose entries M
(k)
ij is one if j = i+ ϕk and zero otherwise for all k ∈ {1, . . . ,K}. CatMeanStd is a function f : RT×F ′ 7→ R2F ′

, which maps

matrix X ∈ RT×F ′
to

[
µT,σT

]T, where µ ∈ RF ′
and σ ∈ RF ′

are the vectors each of whose entries µk and σk are the mean and the standard deviation
of vector [X1k, . . . , XTk]

T, respectively.

representation y ∈
{
y′ ∈ {0, 1}C |

∑C
j=1 y

′
j = 1

}
. For a mini-

batch with size B, the CE loss is given by

LCE = − 1

B

B∑
l=1

C∑
j=1

ylj log ŷlj , (1)

where yl = (ylj)1≤j≤C and ŷl = (ŷlj)1≤j≤C are the target
and predicted accent labels of the lth sample in a mini-batch,
respectively.

In the experiment in Section IV, we used a classifier based
on the architecture in [14], as shown in Fig. 1 (a). This
architecture is also used as a sub-model in [15], which achieved
the highest accuracy in track 1 (i.e., English accent recognition
task) of the accented English speech recognition challenge
2020 (AESRC2020) [10].

III. PROPOSED METHOD: GE2E-BASED ACCENT
CLASSIFICATION

A. GE2E-AC

During training, the baseline method described in Section II
focuses on directly minimizing the error in the predicted accent
label. However, this training approach may cause the model
to rely on irrelevant information, such as speaker identity,
to reduce training loss, leading to poor test performance. To
prevent this, we propose using a metric learning approach
that trains the model to extract AEs from input utterances,
ensuring that the AEs of utterances with the same accent class

are closer together while those of different accent classes are
farther apart. This approach also offers significant advantages
in potential applications beyond improving the model’s gener-
alization ability. Specifically, the ability to extract AEs allows
it to be used for tasks like one-shot accent conversion, where
input speech is converted to match the accent of a reference
speech sample, even if the reference accent is unknown.

GE2E loss training is a type of metric learning approach
originally used for speaker verification [11]. It has proven
highly effective in this task by extracting speaker embeddings
from input utterances so that embeddings from the same
speaker are closer together, while those from different speakers
are farther apart. In our proposed method, we adapt this
approach for the AC task, treating accent classes similar to
how speaker identities are handled in speaker verification.
In the proposed GE2E-AC, by pulling the AEs from the
utterances of the same accent type closer together and pushing
those from differently accented utterances away, the model
would learn to extract an abstract representation of accent,
thereby avoiding overfitting to individual speakers. Although
there are other possible methods of deep metric learning such
as Siamese network [16], we employ GE2E loss here, since
its effectiveness has already been shown in another speech
processing task [11].

The actual flow of GE2E-AC is as follows (Fig. 1 (b)). We
first extract a D-dimensional AE a = fAE(X) ∈ RD from
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input feature X by using an accent embedding network fAE :
RT×F 7→ RD. During training, we define a mini-batch of
input features as a set of M utterances for each of C accent
types. Let aji ∈ RD be the AE of the ith utterance of the jth
accent for i = 1, . . . ,M , and j = 1, . . . , C. As shown in Fig.
1 (b), we define an AE such that it has a unit L2 norm (i.e.,
∥aji∥2 = 1). Based on these AEs, we can compute two types
of centroids for each accent class j, which are given by

cj =
1

M

M∑
i=1

aji, c
(−i)
j =

1

M − 1

M∑
m=1
m ̸=i

aji. (2)

We also define the L2 normalization of the centroids by

c̄j =
cj

∥cj∥2
, c̄

(−i)
j =

c
(−i)
j

∥c(−i)
j ∥2

. (3)

By using these L2 normalized centroids, we define MC ×
C similarity matrix S = (Slk)1≤l≤MC,1≤k≤C , whose (l, k)th
entry is given by

Slk =

{
waji · c̄(−i)

k + b j = k,

waji · c̄k + b otherwise,
(4)

where w and b are learnable weight and bias parameters for the
similarity metric and l = (j − 1)M + i for i = 1, . . . ,M and
j = 1, . . . , C. As in [11], we define each entry Slk differently
in the cases of j = k and j ̸= k for training stability.

Based on similarity matrix S in (4), we train the entire
network to minimize the GE2E loss, which is given by

LGE2E = − 1

MC

MC∑
l=1

C∑
k=1

ylk log ŷlk, (5)

where ŷlk = exp(Slk)/{
∑C

k′=1 exp(Slk′)}. In regard to the
final formulation, the GE2E loss in (5) looks similar to the
CE loss in (1). However, unlike in the CE loss, the predicted
accent labels {ŷlk} in the GE2E loss are computed based on
the similarity {Slk} between the AEs and their centroids. To
minimize the GE2E loss, the accent embedding network should
learn to pull the AEs closer to the centroid of its accent type
and to push them away from the other centroids. This facilitates
the AEs of the same accent type getting closer together, even
if they are uttered by mutually different speakers, which would
improve the generalization performance in AC.

In the experiment in Section IV, to evaluate the effect of
introducing the GE2E loss instead of the CE one, we set
the shallower part of the model (i.e., “Accent Embedding
Network” in Fig. 1) to be the same as that of CE-AC. In the
standard GE2E-AC, we used only the shallower part than the
gradient reverse layer.

B. GE2E-AC-A

Although introduction of GE2E loss alone would improve
the performance of AC during test time, AEs of GE2E-AC
might still contain some information related to speaker identity,
since there are no samples of different accents from the same

speaker. To further eliminate speaker-related information from
AEs and improve the generalization performance, we also
propose GE2E-AC-A, in which we incorporate an adversarial
speaker classification or SC loss LSC into the training criterion.
We consider such a loss to avoid mixing speaker information
in AEs. It must be noted that a similar technique has also
been used in [17], although our main contribution lies in
introduction of GE2E loss for AEs, rather than in that of SC
loss.

Specifically, the SC loss can be computed by using another
network fSC : RD 7→ [0, 1]S (i.e., “Speaker Classification Net-
work” in Fig. 1), which predicts a speaker index from an AE.
Let s ∈

{
s′ ∈ {0, 1}S |

∑S
j=1 s

′
j = 1

}
be the target speaker

label in one-hot representation and let ŝ = fSC(a) ∈ [0, 1]S

be the predicted one. The SC loss is given by

LSC = − 1

B

B∑
l=1

S∑
j=1

slj log ŝlj , (6)

where sl = (slj)1≤j≤S and ŝl = (ŝlj)1≤j≤S are the target
and predicted speaker labels of the lth sample in a mini-batch,
respectively.

The training strategy of GE2E-AC-A is two-fold. The
speaker classification network should be trained to minimize
SC loss LSC, while the accent embedding network should
be trained to maximize it. We can implement such an ad-
versarial learning by adding a gradient reversal layer (GRL)
[18] before the speaker classification network. The GRL is an
identity function in forward propagation, while it multiplies
the gradient from the deeper layers by −1 in backpropagation.
By introducing GRL, we can formulate the overall training
criterion of GE2E-AC-A to be minimized by LGE2E+λSCLSC,
where λSC is a hyperparameter. As GE2E-AC, we used a
network architecture in Fig. 1 (b) in the experiment in Section
IV.

IV. EXPERIMENT

To confirm the effectiveness of the proposed GE2E-AC, we
conducted an experiment using CSTR VCTK Corpus [19].
Among this data set, we only used the samples of accent types
of “English,” “American,” “Scottish,” “Irish,” and “Canadian,”
which consist of 33, 22, 19, 9, and 8 speakers, respectively.
For each accent type, we randomly chose five test speakers and
used the other speakers for training. We trimmed leading and
trailing silence of each sample and resampled it to 16 KHz.

As input features, we adopted BNF [12] and HuBERT [13].
We extracted these features from WAV samples by using the
codes provided by [20], [21] and trained each model of CE-AC
(baseline), GE2E-AC, and GE2E-AC-A with them.

The hyperparameters for training the models were as fol-
lows. For all the models, we used Adam [22] with the learning
rate of 1.0× 10−5 for optimization and set the minibatch size
to 16, the number of epochs to 100, λSC to 1.0 × 10−5, and
the number M of utterances per accent type to 10. It must
be noted that, since a mini-batch of GE2E-AC and GE2E-AC-
A consists of the same number M of utterances for all the
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accents with generally different sample sizes {n1, . . . , nC},
we could not determine the meaning of one epoch in the usual
sense. Therefore, for these methods, we defined the nominal
“sample size” for a sample which includes one input feature
for each accent as the maximum sample size maxj=1,...,C nj

in the experiment. We clipped the max L2 norm of the
gradients of the model parameters to 1.0 for CE-AC and 3.0 for
GE2E-AC and GE2E-AC-A. Finally, we computed confusion
matrices by using the trained models. The (i, j)th entry of
a confusion matrix indicates the number of training or test
samples whose target accent index is i and whose predicted
counterpart is j. Since outputs of the GE2E-based models
are accent embeddings a, not predicted accent classes ŷ, we
need to determine ŷ from a to compute a confusion matrix.
Based on the accent embeddings of all the training samples,
we first computed the centroid (i.e., mean of embeddings) of
each accent class. We defined the predicted accent class of a
given sample with accent embedding a′ as the class whose
centroid had the highest cosine similarity with a′.

Tables I, II, and III show the classification accuracy of
each method in the cases of three, four, and five accent
types, respectively. Aside from the case of using HuBERT
for classifying four accent types, the proposed GE2E-AC or
GE2E-AC-A achieved better test performance than that of
the CE-based baseline method. In some cases (e.g., using
HuBERT for classifying four accent types), the adversarial
speaker classification loss in combination with the GE2E loss
was effective, while in other cases it was not. In regard to the
input feature type, HuBERT yielded better test performance
than BNF did in most cases. As more detailed results, Figs.
2, 3, and 4 show the confusion matrices in the cases of three,
four, and five accent types, respectively. Although there were
slight differences in the values of the confusion matrices, they
showed similar classification tendency to each other among
all the settings. For instance, when the number of accent
types was five, it was hard for all the models to correctly
classify the Canadian speakers, and most of the utterances by
Canadian speakers were classified as “American.” This would
be probably due to the bias in sample size, and to mitigate
such a problem would be an important direction of a future
study.

V. CONCLUSION

In this study, we proposed a new training method for AC
based on the similarity between a pair of accent embeddings
of the utterances so that the model can avoid overfitting to
specific speakers. The effectiveness of the proposed GE2E-AC
has been shown experimentally, compared to the existing CE-
based method in which we directly minimize the classification
loss for individual utterances. A possible future direction of
this study would be to utilize the proposed method as a
preliminary step toward accent conversion, where we aim to
convert the accent of an input utterance to some different one.
By extracting an AE from a target sample with a trained GE2E-
AC model and using it for test-time accent conversion, it would
be possible to convert accents in zero-shot manner.

TABLE I
ACCURACY OF ACCENT RECOGNITION FOR EACH SETTING WITH THREE

ACCENT TYPES.

Method (Feature type) Training accuracy Test accuracy
CE-AC (BNF) 99.9% 78.8%
GE2E-AC (BNF) 100.0% 81.2%
GE2E-AC-A (BNF) 99.7% 77.8%
CE-AC (HuBERT) 98.7% 81.9%
GE2E-AC (HuBERT) 99.9% 85.0%
GE2E-AC-A (HuBERT) 100.0% 85.2%

TABLE II
ACCURACY OF ACCENT RECOGNITION FOR EACH SETTING WITH FOUR

ACCENT TYPES.

Method (Feature type) Training accuracy Test accuracy
CE-AC (BNF) 99.8% 59.2%
GE2E-AC (BNF) 100.0% 63.8%
GE2E-AC-A (BNF) 100.0% 62.1%
CE-AC (HuBERT) 99.7% 65.9%
GE2E-AC (HuBERT) 100.0% 63.5%
GE2E-AC-A (HuBERT) 99.6% 64.9%

TABLE III
ACCURACY OF ACCENT RECOGNITION FOR EACH SETTING WITH FIVE

ACCENT TYPES.

Method (Feature type) Training accuracy Test accuracy
CE-AC (BNF) 99.2% 46.6%
GE2E-AC (BNF) 100.0% 49.7%
GE2E-AC-A (BNF) 100.0% 49.6%
CE-AC (HuBERT) 99.4% 50.9%
GE2E-AC (HuBERT) 100.0% 52.8%
GE2E-AC-A (HuBERT) 100.0% 53.4%
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Fig. 2. Confusion matrices with three accent types. The value plotted in each entry indicates the number of corresponding samples. “En,” “Am,” and “Sc”
stand for English, American, and Scottish, respectively.

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

11577 5 11 2

0 6773 0 0

5 3 5761 1

3 8 1 1580

CE-AC (BNF),
training

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

11590 1 3 1

0 6772 1 0

0 2 5768 0

0 0 0 1592

GE2E-AC (BNF),
training

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

11595 0 0 0

0 6773 0 0

1 0 5769 0

0 0 0 1592

GE2E-AC-A (BNF),
training

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es
11556 3 27 9

5 6766 1 1

3 0 5766 1

8 6 7 1571

CE-AC (HuBERT),
training

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

11594 0 1 0

0 6772 1 0

6 3 5760 1

0 0 0 1592

GE2E-AC (HuBERT),
training

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

11511 67 3 14

0 6772 0 1

0 8 5762 0

0 3 0 1589

GE2E-AC-A (HuBERT),
training

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

1702 83 234 31

107 1847 104 58

520 198 1000 123

653 887 279 215

CE-AC (BNF),
test

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

1743 56 216 35

107 1853 98 58

470 153 1154 64

653 750 247 384

GE2E-AC (BNF),
test

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

1834 52 134 30

118 1828 102 68

591 134 1044 72

707 790 248 289

GE2E-AC-A (BNF),
test

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

1747 28 231 44

36 1914 92 74

293 81 1209 258

478 714 413 429

CE-AC (HuBERT),
test

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es
1949 36 56 9

74 2012 21 9

762 173 845 61

615 1020 101 298

GE2E-AC (HuBERT),
test

En Am Sc Ir
Predicted classes

En

Am

Sc

Ir

Co
rre

ct
 c

la
ss

es

1792 95 114 49

19 2060 27 10

390 306 952 193

278 1221 119 416

GE2E-AC-A (HuBERT),
test

Fig. 3. Confusion matrices with four accent types. “Ir” stands for Irish.
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