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Abstract—Word embeddings transform each word into a vector
space representation, making it possible for computers to process
and analyze the human language. However, storing and pro-
cessing these word vectors can become resource-intensive as the
vector space dimension increases and the vocabulary expands. It
poses a challenge, especially for mobile edge-device applications.
This paper explores dimension reduction for word embedding
to balance computational costs and performance. We propose
an efficient weakly-supervised feature selection method called
WordFS, which has two variants utilizing novel criteria for
feature selection. Our experiments on various tasks, such as word
similarity and binary and multi-class classification, show that
WordFS outperforms other dimension reduction methods while
requiring lower computational costs.

I. INTRODUCTION

In recent years, large language models (LLMs) have made
a breakthrough in natural language processing (NLP). These
models have revolutionized the understanding and generation
of human language tasks such as question-answering, machine
translation, and text summarization [1], [2], etc. As a funda-
mental component in language models, word embedding repre-
sents words as vectors in a continuous, high-dimensional space
[3]. Word vectors capture semantic and syntactic meanings of
words, providing word relationships for various downstream
tasks. Static word embedding methods assign a fixed vector to
each word. They convert input words to corresponding vectors
for further processing and model training. Contextual word
embedding methods leverage deep-learning models to generate
word vectors based on the context. A word can have a different
contextual word embedding in a different sentence, allowing
the model to capture subtle differences in the meaning of the
same word in various contexts.

A common challenge for static and contextual word em-
bedding methods is that the high dimension of a word vector
leads to an enormous model size. Typically, a word vector has
hundreds to thousands of dimensions. For instance, loading
a 300-dimensional word embedding matrix with 2.5 million
tokens would require up to 6 GB of memory on a 64-bit
system [4]. On the one hand, high-dimensional word vectors
provide a good representation of complex human language,
which is crucial for performing downstream tasks. On the other
hand, high-dimensional word vectors have higher demands
on computational resources and memory requirements. Thus,
dimension reduction is critical in the application of word
vectors.

Existing dimension reduction methods mainly consist of

traditional PCA-based and deep-learning-based models. Tra-
ditional unsupervised PCA-based methods are known for their
efficiency and interpretability. In contrast, supervised deep-
learning-based methods are inefficient and lack interpretability.
Semi-supervised feature selection methods can also be used
for dimension reduction. Since word vectors can be viewed
as extracted features for each word, feature selection methods
have the potential to provide a straightforward yet effective
way to reduce the word dimension. It could help balance un-
supervised PCA-based methods and resource-intensive deep-
learning-based methods.

This paper investigates using a small subset of labeled
word similarity pairs to develop a weakly supervised dimen-
sion reduction method called WordFS (i.e., word dimension
reduction with Feature Selection). We demonstrate that one
can achieve dimension reduction effectively by supervising a
limited number of word similarity pairs. Note that word simi-
larity is typically used in evaluation tasks but is rare in word
embedding dimension reduction, a key novelty of this work.
The proposed WordFS method consists of three stages: 1) post-
processing, 2) feature extraction, and 3) weakly-supervised
feature selection. We apply WordFS to other downstream tasks
to show its generalizability. Experimental results show that
WordFS outperforms existing methods in word similarity and
various tasks while achieving much lower computational costs.

This work has the following significant contributions.

• We propose a novel, effective, and efficient dimension
reduction method called WordFS for word embeddings
from the perspective of feature selection based on weakly-
supervised learning.

• We demonstrate the potential of combining feature se-
lection methods and word similarity for word embedding
dimension reduction.

• We show the effectiveness and efficiency of our ap-
proach on various downstream tasks, including binary
and multi-class classification tasks. Our method generally
outperforms the existing techniques while being more
straightforward.

The rest of the paper is organized as follows. Related work is
reviewed in Sec. II. The proposed WordFS method is described
in Sec. III. Experimental results are shown in Sec. IV. Finally,
concluding remarks and future extensions are given in Sec. V.



II. RELATED WORK

Word embedding compression is an essential topic for stor-
ing and processing word embeddings, especially on computa-
tionally limited devices. Existing dimension reduction methods
mainly consist of traditional and deep learning-based models.

A. Matrix Decomposition Techniques

Matrix decomposition techniques, such as singular value
decomposition (SVD), principal components analysis (PCA),
non-negative matrix factorization (NMF), and factor analysis
(FA), have been applied to dimension reduction of word
embeddings. While simple and efficient, these methods are not
highly effective.

Post-processing methods help enhance word embedding in
dimension reduction. One can achieve lower dimensional word
embeddings by combining post-processing algorithms (PPAs)
to reduce the anisotropy [5] with PCA [4]. The dimension-
reduced vectors can perform similarly or even better than
the original pre-trained word embeddings, outperforming most
unsupervised methods.

B. Deep Learning Methods

Deep learning-based models have recently become quite
popular, and efforts have been made to explore their potential
in reducing word embedding dimensions. EmbedTextNet [6]
achieves better performance in low-dimensional embedding
sizes by utilizing a VAE model with a correlation penalty
added to the weighted reconstruction loss. However, deep
learning models typically require more computational re-
sources and longer training time, contradicting the original goal
of dimension reduction.

C. Feature Selection Methods

Feature selection is another simple and intuitive method for
removing redundant features. Feature selection methods can
be applied to bag-of-words representations, where each unique
word is treated as a distinct feature, for emotion recognition
[7] and sentiment classification [8] tasks to reduce the number
of terms and save storage and memory space. Also, feature
selection methods can be applied for text classification to select
the most representative word [9]. However, the role of feature
selection for word embedding dimension reduction is under-
explored. This paper shows that a straightforward and intuitive
feature selection method can effectively reduce dimension.
We believe applying the feature selection method for word
embedding dimension reduction is novel.

III. PROPOSED METHOD

A. System Overview

Our WordFS method consists of three stages: 1) post-
processing, 2) feature extraction, and 3) feature selection. We
adopt word similarity datasets as the source of supervision
to guide the feature selection in our model. As a widely-
used benchmark of word embeddings, the word similarity
task evaluates the quality of word embeddings in representing
semantic and syntactic meanings by measuring how closely

the representation of word vectors matches human perception
of similarity [10], making them good supervision resources
for word embedding dimension reduction. Also, since word
similarity captures fundamental characteristics of word em-
beddings, which are crucial for many NLP tasks, its potential
for generalizing to downstream tasks is noteworthy.

In our method, We begin by optionally applying a post-
processing method to our pre-trained word embeddings since
the anisotropy may not always be harmful [11]. We then extract
pair-wise features for each word pair by conducting element-
wise production with normalization. Then, we adopt two dif-
ferent criteria for feature selection to evaluate each dimension
and identify essential dimensions. The first one is based on
a supervised feature selection method called RFT [12]. The
second is based on Spearman’s rank correlation coefficient
between each feature dimension and word similarity scores.
Finally, the selected dimensions of the word embeddings are
kept, and other dimensions are discarded according to the
requirements for dimension reduction. The details of each stage
are elaborated below.

B. Post-processing

To improve the quality of word embedding in downstream
applications, performing post-processing techniques on pre-
trained word embeddings can be crucial. The post-processing
algorithm (PPA) [5] is an effective post-processing method to
improve the isotropy of word representations by removing the
top principal components of all words.

The existing effective PCA-based method [4] applies the
PPA before and after dimension reduction to enhance both
the original and the dimension-reduced word vectors. In our
method, we only apply PPA before dimension reduction,
which makes our method simpler. Applying PCA-based post-
processing to the selected subset after feature selection may
disrupt the previous results because PCA and the feature
selection criteria can have different objectives. Specifically,
PCA transforms features to maximize variance, while fea-
ture selection methods usually select features based on their
correlation with labels. Also, the selected feature subset may
lose crucial information for PCA to find valuable principal
components. As an enhancement of original word embeddings
before dimension reduction, we also make PPA an optional
choice. The reason is that anisotropy may not always be
harmful [11] and using PPA depends on the pre-trained word
embeddings and specific application scenarios. Specifically,
word embeddings trained on less data may be vulnerable
to noise. Applying PPA helps mitigate some of the noise
and offers better performance. On the other hand, using PPA
may result in the loss of crucial and intricate information
related to word representation, which can harm performance.
Word embeddings trained on relatively small data benefit
from uniformly distributed word embeddings, while complex
contextual tasks may require anisotropy to capture detailed
information.
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C. Feature Extraction

In this stage, we extract suitable features for feature selection
based on the dataset that provides supervision. In this paper,
we leverage word similarity data as the weak supervision of
our model. Since the word similarity is based on the correlation
(i.e., word similarity score) between every two words, we
extract pair-wise features for each word similarity pair.

The pair-wise features are constructed in each dimension
based on cosine similarity, an effective measure for evaluating
the similarity between word embeddings. Cosine similarity
between two-word vectors is derived by dividing their dot
product by the product of their magnitudes:

Sim(a, b) =
a · b

∥a∥∥b∥

=

∑n
i=1 aibi√∑n
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2
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√∑n
i=1 b

2
i

,
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where a and b are embeddings of the two words. The cosine
similarity score can be viewed as the sum of the normalized
results of element-wise products. Each pair of elements (i.e.,
each dimension) has a linear impact on the cosine similarity
score of that pair of word vectors. Therefore, the normalized
results of element-wise products can be viewed as features
to predict the similarity score. The feature we use for each
dimension is:

fi =
aibi√∑n

i=1 a
2
i ·

√∑n
i=1 b

2
i

, (2)

where fi is the feature of the ith dimension extracted from
the two word embeddings.

D. Feature Selection

The method for the feature selection process depends on
the objective of downstream tasks. Specifically, we employ
two feature selection methods for prediction and similarity
tasks. These two feature selection methods are developed into
our model’s variants, WordFS-S and WordFS-P. We focus
on filter feature selection techniques since they are simple
and computationally efficient. Although different dimensions
of distributed word embeddings may capture nuanced and
interdependent semantic relationships, they allow us to identify
dimensions that contribute most significantly to model per-
formance. Besides, filter feature selection techniques select
features based on their correlation with the labels and are
independent of the classifier. As a result, the selected features
are generalizable.

Prediction tasks: For prediction tasks, we leverage the
methods from Discriminant Feature Test (DFT) and Relevant
Feature Test (RFT) [12] to build our WordFS-P model. DFT
and RFT are a pair of filter feature selection techniques
proposed recently for classification and regression tasks, re-
spectively. They have been widely used in green learning
architectures [13] for feature dimension reduction to reach a
smaller model size. In our experiments, RFT is utilized for
feature selection, and we adopt the word similarity scores

as the labels. RFT partitions each feature dimension into
two subintervals and calculates the overall mean square error
(MSE) as the loss function. A smaller loss function means
a better feature dimension. Specifically, given a feature of
the ith dimension fi, the feature space is partitioned into
B = 2k, k = 1, 2, ... uniform segments and the optimal
partition threshold is searched among B − 1 candidates in the
range [min(fi),max(fi)]:

f i
b = min(fi) +

b

B
[max(fi)−min(fi)] , (3)

where b = 1, 2, ...B − 1. The threshold t partitions the ith

feature space into the left subset Si
L,t and the right subset

Si
R,t. The MSEs for regression Ri

L,t and Ri
R,t are calculated

separately in the two subsets. Then, the RFT loss is defined
as the weighted sum of the two MSEs:

Ri
t =

N i
L,tR

i
L,t +N i

R,tR
i
R,t

N
, (4)

where N i
L,t and N i

R,t denote the number of samples in each
subset and N is the total number of samples. The RFT loss
of each feature dimension is defined as the minimal RFT loss
among all the candidate thresholds:

Ri = min
t∈T

Ri
t. (5)

Finally, all feature dimensions’ RFT loss is ranked in ascending
order, and the top K dimensions are selected, where K is the
dimension of the word vectors after our dimension reduction
approach.

Similarity tasks: Similarity tasks are usually done by
calculating the cosine similarity between target vectors, which
differs from prediction tasks. The cost function of DFT/RFT
may not match well with the evaluation criteria of similar-
ity tasks. Inspired by the evaluation of word similarity, we
use Spearman’s rank correlation coefficient to develop our
WordFS-S model. It involves finding the correlation between
the ranks generated by features extracted from each dimension
and the target labels. First, the ranked values of each feature
dimension and the labels are calculated. Second, Spearman’s
rank correlation coefficient for each feature dimension is
calculated by the Pearson correlation coefficient between the
ranked values of each dimension and the labels:

ri = ρR(fi),R(y) =
cov(R(fi), R(y))

σR(fi)σR(y)
. (6)

The higher the correlation coefficient, the better the feature
dimension is. Finally, the Spearman’s rank correlation co-
efficients of all the feature dimensions are then ranked in
descending order, and the top K dimensions are selected.

IV. EXPERIMENTS

We evaluate our method by applying it to pre-trained word
embeddings. The word similarity datasets provide weak super-
vision to guide our feature selection module. The dimension-
reduced word embeddings are used for word similarity tasks
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TABLE I
COMPARISON OF SPEARMAN’S RANK CORRELATION COEFFICIENT ACROSS MULTIPLE WORD SIMILARITY DATASETS, WHERE BOLDFACE INDICATES THE

BEST VALUE IN EACH COLUMN, AND UNDERLINE INDICATES THE SECOND BEST VALUE IN EACH COLUMN.

MC Men M M RG RW Sim VE WS WS WS YP
Dataset -30 -TR Turk Turk -65 Stan Lex RB -353 -353 -353 -130 Avg

-3k -287 -771 ford -999 -143 -ALL -REL -SIM
Glove-300D [14] 64.03 73.71 62.44 64.60 72.97 41.16 36.97 29.97 60.27 55.44 64.74 55.15 56.79
Algo-150D [4] 67.97 75.21 62.47 64.11 72.94 43.45 37.81 38.06 66.71 60.55 70.74 58.09 59.84

EmbedTextNet-150D [6] 79.59 75.43 58.36 62.91 80.00 41.31 37.49 27.33 63.06 55.35 67.50 55.80 58.68
WordFS-P-woP-150D (ours) 66.79 74.94 60.68 63.44 69.76 36.16 37.93 30.30 62.49 53.69 66.78 52.27 56.27
WordFS-P-wP-150D (ours) 72.94 75.38 64.38 64.24 70.46 45.01 42.47 34.88 68.53 60.58 70.25 50.67 59.98
WordFS-S-woP-150D (ours) 67.79 75.78 62.62 62.95 70.26 36.07 44.72 36.61 64.72 55.36 69.42 45.76 57.67
WordFS-S-wP-150D (ours) 72.27 75.96 65.57 64.35 70.69 45.22 45.08 36.03 67.16 59.18 71.00 52.90 60.45

TABLE II
PERFORMANCE COMPARISON OF SPEARMAN’S RANK CORRELATION
COEFFICIENTS ON THE AGGREGATED WORD SIMILARITY DATASET.

Dimension 300 150 100 50
Glove [14] 45.74 – 38.45 36.24
Algo [4] – 53.48 49.35 42.61

EmbedTextNet [6] – 52.71 43.88 41.00
WordFS-P-woP (ours) – 48.23 48.39 48.22
WordFS-P-wP (ours) – 54.69 52.60 47.29
WordFS-S-woP (ours) – 55.85 54.45 49.32
WordFS-S-wP (ours) – 56.76 54.73 50.11

and downstream tasks. Then, we compare the results of our
method with the original pre-trained word embeddings, the
dimension-reduced word embeddings from the PCA-based
method called Algo [4], and the results from the deep learning-
based method called EmbedTextNet [6].

A. Pre-trained Word Embeddings

In our experiments, we use the Glove word embeddings [14]
trained on Wikipedia 2014 and Gigaword 5 corpus (6B tokens,
400K vocabulary). They are available in multiple dimensions,
precisely 50, 100, 200, and 300.

B. Word Similarity Datasets

We use the widely-used word similarity datasets [15] to
evaluate our method. The word similarity datasets contain word
pairs and their corresponding scores from human annotators
based on perceived relatedness or similarity. The cosine simi-
larity of each pair of words calculates the similarity score from
the word embeddings. We use Spearman’s rank correlation
coefficient as our evaluation metric. It measures how closely
the ranking derived from the cosine similarities of given word
vectors matches those based on human judgments. A higher
value of this metric indicates a better match to human-labeled
similarity rankings.

We first evaluate our methods on twelve word similarity
datasets. Since we choose word similarity as the guidance
for feature selection, we apply 5-fold cross-validation to each
word similarity dataset to train and test our method. The
reported results are the average Spearman’s rank correlation
coefficients from the five folds. We evaluate the pre-trained

word embeddings and all the methods on the same cross-
validation fold and take the average for a fair comparison. All
the results we report average over five different cross-validation
trials in all the experiments. We set the number of bins in RFT
to 4, the default and recommended value from the RFT model,
and the threshold in the PPA to 7, the same as in the PCA-
based model.

Table I shows the results across twelve word similarity
datasets of different dimension reduction methods reduced
from 300-dimensional Glove word embeddings to 150 di-
mensions. In the table, WordFS-P and WordFS-S represent
our proposed methods based on RFT and similarity feature
selection methods, respectively. P represents PPA, and wP and
woP represent PPA and without PPA. The last column is the
average of the previous columns. For the dimension-reduced
vectors, our methods outperform the original word embeddings
and other methods in most datasets. Our WordFS-S-wP method
achieves the highest average score. Both feature selection-
based approaches perform better than the existing methods. As
expected, the WordFS-S-wP method performs better than the
WordFS-P-wP method in this task. Our WordFS-S-wP method
outperforms the best performance from existing methods with
an average improvement of 0.61 in terms of Spearman’s rank
correlation coefficients when reducing to 150 dimensions. Our
method can perform better than the original 300-dimensional
word embeddings when reduced to 150 dimensions.

Then, we aggregated the twelve word similarity datasets. We
first scaled them into the same range [0, 1] and then averaged
the similarity scores of overlapped word pairs. There are two
reasons to aggregate the datasets: 1) to provide an overall
evaluation for the word similarity tasks and 2) to construct
a comprehensive dataset to train our feature selection methods
for various downstream tasks. We refer to our model as a
weakly-supervised method for downstream tasks because there
are only 7,705 human-labeled similarity scores for different
word pairs in the aggregated dataset, which is much less
than the total number of possible word pairs in the corpus
to pre-train the word embeddings. For example, there are
400K word vectors in the pre-trained Glove word embeddings,
which can generate approximately 80 billion unique word
pairs. Compared with the possible word pairs, the guidance
provided by the aggregated dataset is limited. We experimented
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TABLE III
COMPARISON OF THE RESULTS OF DOWNSTREAM PREDICTION TASKS. THE LAST COLUMN IS THE AVERAGE OF THE PREVIOUS COLUMNS.

Task MR CR MPQA SUBJ STS-B SST TREC MRPC SICK-E Avg
-FG

Glove-300D [14] 74.99 75.81 86.75 91.39 78.20 40.77 66.6 75.28 77.19 73.81
Algo-150D [4] 73.70 75.32 85.31 89.59 76.66 40.95 60.7 71.68 76.49 72.27

EmbedTextNet-150D [6] 72.67 74.09 84.95 90.08 73.75 40.50 64.8 71.54 74.43 71.87
WordFS-P-woP-150D (ours) 73.09 74.86 86.24 89.86 76.22 39.55 65.4 71.01 76.62 72.54
WordFS-P-wP-150D (ours) 74.03 76.00 86.24 89.20 76.50 41.27 65.2 70.38 76.46 72.81

Algo-100D [4] 70.61 72.82 82.71 88.16 74.63 38.28 56.2 71.83 75.36 70.07
EmbedTextNet-100D [6] 71.55 72.87 84.44 88.88 70.18 38.46 62.2 71.48 75.14 70.58

WordFS-P-woP-100D (ours) 72.24 73.96 85.26 88.62 73.97 38.37 62.0 71.42 76.60 71.38
WordFS-P-wP-100D (ours) 72.68 75.42 85.50 88.25 76.94 40.50 64.4 71.59 74.87 72.24

Algo-50D [4] 66.24 70.23 76.35 84.32 69.36 35.88 48.1 71.39 72.98 66.09
EmbedTextNet-50D [6] 69.36 72.34 82.79 87.65 71.66 38.64 60.2 68.29 74.20 69.45

WordFS-P-woP-50D (ours) 68.54 70.54 81.35 85.51 69.85 35.61 56.2 71.65 73.19 68.05
WordFS-P-wP-50D (ours) 69.96 71.05 83.29 84.25 72.10 37.69 56.6 71.30 72.82 68.78

TABLE IV
COMPLEXITY COMPARISON OF THE ALGO METHOD, THE EMBEDTEXTNET

METHOD, AND OUR METHODS WHEN REDUCING THE WORD EMBEDDING
DIMENSIONS FROM 300 TO 150 IN HARDWARE CONFIGURATION AND

TRAINING TIME.

Method Hardware Configuration Training Time (s)
EmbedTextNet [6] GPU 2149.04 (1535.03X)

Algo [4] 21.50 (53.75X)
WordFS-S-wP (ours) 17.63 (44.08X)
WordFS-P-wP (ours) CPU 11.84 (29.60X)
WordFS-S-woP (ours) 4.05 (10.13X)
WordFS-P-woP (ours) 0.40 (1X)

with the aggregated dataset using the same settings as before.
Table II shows the results of various methods for dimension

reduction on the aggregated dataset. Our WordFS-S methods
perform best among all the experiments in different dimen-
sions. And there is a large gap between our methods and the
existing methods. Compared to other methods, our approaches
significantly benefit this task, particularly in lower dimensions
where the gap widens. It is worth noting that even when
reduced to 50 dimensions, our WordFS-S-wP method achieves
better performance compared to the original 300-dimensional
word embeddings.

C. Downstream Tasks

It is insufficient to evaluate word embeddings only based
on word similarity tasks. To demonstrate the power of our
method, generalizability on downstream tasks is crucial. We
utilize the SentEval toolkit [16] to evaluate the dimension-
reduced vectors on various downstream tasks. We conducted
experiments on nine prediction tasks, including binary and
multi-class classification tasks (MR, CR, MPQA, SUBJ, STS-
B, STS-FG, and TREC), paraphrase detection task (MRPC),
and entailment and semantic relatedness task (SICK-E). These
tasks directly take the word embeddings as input. We applied
our WordFS-P method with the RFT feature selection based

on weak guidance from the aggregated word similarity dataset
to the pre-trained word embeddings in all the experiments to
reduce the dimension. Then, we directly input the dimension-
reduced embeddings to the downstream tasks and compare the
test accuracy of different methods for each task.

Table III shows the results of various methods on the
nine prediction tasks. Our experiments show that our method
outperforms the PCA-based method on most prediction tasks.
Also, our method achieves higher average scores than the
PCA-based method in all the settings. Our method performs
better than the EmbedTextNet model, although it performs
slightly worse when reduced to 50 dimensions. However, as
shown in the next section, our model is much more efficient
and takes less time to train than the EmbedTextNet model.
Our method retains more helpful information for most set-
tings while reducing dimensions, achieving a much closer
prediction performance to the original 300-dimensional word
embeddings. It indicates the effectiveness of our method. Also,
it proves that our method can generalize well on various
prediction downstream tasks in a zero-shot manner.

D. Model Efficiency

We compare the model efficiency of the Algo method, the
EmbedTextNet method, and our method when reducing the
word embedding dimensions from 300 to 150 in Table IV.
Different hardware is used for other methods because of their
algorithmic nature. All the experiments were conducted on
the same server, equipped with two AMD EPYC 7543 32-
core CPUs and seven NVIDIA RTX A6000 GPUs. The deep
learning-based model is trained using the GPUs, while the
Algo model and our methods are trained using only the CPUs.
The EmbedTextNet model takes approximately 30 minutes to
train on the GloVe word embeddings. In contrast, the training
time for our WordFS-P-wP and WordFS-S-wP models is less
than 19 seconds and 13 seconds, respectively. Our methods
without post-processing require even less time — the training
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of the WordFS-P-woP model is completed within one second,
making it thousands of times faster than the deep learning-
based method.

Additionally, our methods are more efficient than the PCA-
based method because they employ PPA before and after the
PCA, while we only apply it once before feature selection. Our
model, without the post-processing, can achieve even less time.
The reason is the post-processing and PCA must be done on the
entire vocabulary. However, our feature selection method only
focuses on a subset of words that appear in the aggregated
word similarity dataset, making the procedure very fast. In
conclusion, Our methods take only a fraction of the time
compared to deep learning methods and less than half the time
compared to existing PCA-based methods. The experimental
results demonstrate that our methods are much more efficient
than existing methods.

V. CONCLUSION AND FUTURE WORK

This paper proposes a general dimension reduction method
called WordFS for pre-trained word embeddings with the post-
processing algorithm (PPA) and simple yet effective feature
selection methods based on weak supervision provided by a
limited number of word similarity pairs. Our method is more
straightforward, efficient, intuitive, and effective in most cases
than the existing methods. Empirical results show that our
method outperforms existing methods in word similarity tasks
and generalizes well to various downstream tasks with much
lower computational costs. In the future, we would like to
explore the compression of word embeddings further. Since
feature selection methods may result in information loss, there
is still room for improvement in the performance of prediction
tasks between the original word embeddings and the reduced
word vectors. Additionally, suitable feature selection methods
can be developed to compress pre-trained word vectors in
specific domains.
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