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Abstract—The effective detection of targets of interest in
large-scale remote sensing imagery has always been a crucial
application task. Detecting tiny objects in these scenes poses
particular challenges, as it can lead to the loss of robust features
and difficulties in generating positive sample matches. To address
this application scenario, this paper proposes a method that
embeds the use of vague search (VGS) to match high-potential
candidate regions within a coarse-to-fine detection framework.
Additionally, a new centroid distance measurement (CDM) is
proposed to distinguish between positive and negative proposals.
The combination of VGS and CDM can effectively increases the
number of positive samples that can be refined in the high-
dimensional detection layer, thereby improving the precision
of detecting tiny objects in large-scale scenes. We tested and
validated our model on a high-resolution optical remote sensing
scene dataset, where the overall mean Average Precision (mAP)
for the target of interest, bridges, improved from 56.2% to 71.3%,
achieving impressive results.

I. INTRODUCTION

Detecting targets in large-scale optical remote sensing im-
ages has always been a challenging task, especially for tiny-
sized targets. Generally, deep neural network-based object
detectors [1]–[3] often struggle to capture robust feature infor-
mation in tiny object detection (TOD) task, both semantically
and spatially. Many researchers have proposed specific solu-
tions for detecting tiny targets in ordinary and remote sens-
ing images. For example, [4] uses a coarse-to-fine approach
to improve the utilization of feature information within the
receptive field by first screening high-potential proposals and
then conducting fine classification in the second stage. [3],
[5], [6]have proposed positive and negative sample learning
strategies during the model training process to supply more
high-quality positive samples that can be stably refined by the
detector. [7] introduced the fountain fusion module to enhance
the model’s ability to fuse multi-scale features, promoting
the extraction of spatial features from shallow feature layers.
These methods have achieved good results in TOD tasks under
different scenarios. However, their generalization performance
in detecting small targets in large-scale remote sensing im-
ages has been unsatisfactory. Therefore, we deeply analyzed
the issues within the network inference mechanisms for this

detection scenario and proposed our solution, TOD-Net1, to
improve the efficiency and accuracy of the model in TOD
scenarios.

In our application scenario, due to the large size of a
single inference image, reaching 2000 × 2000 (to meet the
inference speed requirements for large-scale remote sensing
images), after a certain number of down-sampling layers in
the feature extraction process, a single detection unit (DU) not
only encompasses the target of interest but also cover a large
area of the background, including the surrounding region of
the target. The visualization results are shown in Fig 1.

We visualized the regions in the original input image cor-
responding to positive samples in a detection layer of size
256×256 (i.e., weight visualization). It can be seen that in
the area where the target of interest—bridge appears, the
effective receptive field (ERF) of this DU covers the target.
However, smaller targets on the right side of the input image
cannot generate effective positive samples (i.e., yellow points
in Fig.1). This is due to the combined effect of the following
two factors:

1) Foreground information of tiny remote sensing objects
is easily submerged by the background during the down-
sampling process of feature extraction..

2) Tiny objects are harder to highlight in the existing
positive sample matching mechanisms, resulting in an
inability to effectively and stably refine them.

Therefore, based on the coarse-to-fine feature extraction
mechanism, we designed a vague search module (VGM) for
filtering high-confidence proposal regions and combined it
with centroid distance measurement (CDM) of polygonal areas
to increase the number of positive detection units during model
training. Based on the above, we formed the core algorithm
mechanism of TOD-Net.

We tested TOD-Net on a self-collected remote sensing
image dataset of an urban scene named GF2UBS (GF-2
urban bridge scene), where the images were captured by
the GF-2 satellite and are single-band panchromatic images.
Additionally, we validated the effectiveness and robustness
of our algorithm on large public remote sensing datasets,
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Fig. 1. Issues in detecting tiny objects of large-scale remote sensing imagery.

including the ship dataset HRSC2016 [8] and the multi-
class remote sensing target dataset UCAS-AOD [9]. TOD-Net
demonstrated superior performance in detecting small targets
in large-scale remote sensing images, improving the overall
detection accuracy (mAP) in the GF2UBS from 56.2% to an
impressive 71.3%.

II. METHODOLOGY

A. Overall Pipeline of TOD-Net

TOD-Net directly uses large-sized remote sensing images
(2000×2000) as network input during both training and testing
phases. Consequently, under the same network configuration,
the ERF of the DUs encompasses a larger spatial range of
ground objects. The overall design process of TOD-Net is illus-
trated in Fig.2. After feature extraction through down-sampling
by the deep neural network (DNN), multi-scale feature maps
of varying sizes are obtained. TOD-Net adopts the classic
ResNet [10] + FPN [11] combination as the backbone for
feature extraction, followed by coarse-grained prediction box
generation, resulting in the classification scores and regression
results of the DUs. Then, two branches separately perform
VGS and fine feature extraction, with the results of VGS
serving as auxiliary information for the fine feature extraction
step.

The multi-task overall loss in our experiments is defined as:

LossOverall = losscoarse + lossfine, (1)

losscoarse and lossfine have the same format which is defined

as:

losscoarse, lossfine = losscls(p, p
∗) + lossreg (t, t

∗) , (2)

where the value p denotes the predicted classification score,
p∗ is the class label for all anchors (p∗ = 1 for positive
anchors and p∗ = 0 for negative anchors). Symbol t is the
position vector of predicted box offsets, and t∗ denotes the
GT box offsets. The position offsets vector t has the format
(x, y, w, h, θ) where x and y denote the central coordinates,
w the width, h the height, and θ the angle. For vector
t = (tx, ty, tw, th, tθ), we have:

tx = (x− xa) /wa, ty = (y − ya) /ha,

tw = log (w/wa) , th = log (h/ha) ,

tθ = tan (θ − θa) ,

(3)

where x and xa are the predicted box and anchor, respectively
(likewise for y, w, h, θ). Focal Loss [12] is used in losscls
to reduce the contribution of easy-to-classify samples, and it
alleviates the insufficient training caused by the class imbal-
ance to a certain extent. The bounding box regression process
(i.e., lossreg) uses smooth L1 loss by default when there is no
special statement.

B. VGS

For the obtained multi-scale feature maps Xi ∈
RH×W×C , i ∈ {0, 1, 2, 3, 4}, i is the scale index in our TOD-
Net. Xi(p) represents the feature vector corresponding to DU
at position p in each feature map, which includes the confi-
dence score of the predicted category generated in the coarse
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detection stage and the regression parameters of the predicted
box. MDp is the positive and negative sample determination
result at position p, p ∈ P{0, 1, ...,W −1}×{0, 1, ...,H−1}.
For positive sample candidate regions, MDp = 1, otherwise
0.

The core objective of VGS is to expand the search range
within the coarse detection results where targets might appear,
thereby maximizing the inclusion of valid targets within pos-
itive DUs that have larger receptive fields. This supports the
feature extraction task in the subsequent fine-grained detection
stage. As a result, searching expanding function F̃ is defined
as:

F̃ : MDp = 1, if IoU(Xi(p)) > 0.2,

for i ∈ [0, 5) and p ∈ [p− 1, p+ 1]
(4)

where IoU is the traditional matching degree used in general
object detectors. F̃ is used to retrieve regions at any detec-
tion unit position that meet the criteria of having prediction
confidence greater than 0.2 within all adjacent scales and
surrounding 3×3 neighboring units. These proposals are then
considered as positive samples, thereby generating potential
candidate regions.

C. CDM

CDM is used to calculate the distance between the centroids
of two polygonal regions as an evaluation metric. Its applica-
tion is particularly suitable when the candidate region is large
and the two regions have significant overlap characteristics. As
shown in Fig. 4, the black dot P0(x0, y0) represents the cen-
troid coordinates of the generated fuzzy candidate region, and
the yellow dot Pc(xc, yc) represents the centroid coordinates
of the generated coupling region (CR). CR is the union of
the predicted box (PB) generated during the coarse detection
stage and the intersecting ground truth (GT). Therefore, the
calculation method for Pc is:

xc =
1

n

n∑
i=1

xi, and yc =
1

n

n∑
i=1

yi. (5)

After obtaining the centroid coordinates of CR, we can
automatically determine whether the anchor box appearing in
the refined feature extraction stage is a positive sample based
on the inscribed circle radius of vague proposals, which is
defined as:

CDM = Dis [P0, Pc] <=

√
2

2

√
ratios 2, (6)

where ratios is the radius of the inscribed circle for vague
proposals, Dis is the distance metric function, which can
be measured using classical vector distance metrics such as
Euclidean distance or Mahalanobis distance.

III. EXPERIMENTS

A. Datasets

We first tested TOD-Net on a self-collected high-resolution
optical remote sensing dataset, GF2UBS, which consists of
GF-2 optical panchromatic images. The dataset contains 182
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Fig. 2. Overall pipeline of TOD-Net. VGS denotes vague search strategy
and we generate coarse detection results in the VGS process. CDM is used in
the finer feature extraction process which cooperates with the output of VGS.
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Fig. 3. Illustration of CDM.

panchromatic image slices, each sized 2000×2000 pixels.
The dataset annotates 282 various types of bridges scattered
throughout urban scenes, as shown in Fig. 4. Since most of
the annotated bridges are small urban traffic bridges, their pixel
sizes are relatively small, with a size distribution ranging from
7×10 to 121×36 pixels.

In addition to the remote sensing tiny object detection
dataset in large-scale images, we also validated the generality
of our method on two commonly used public remote sensing
object detection datasets, which are introduced as follows:

1. HRSC2016 [8] is for ship detection that was collected
from six harbors on Google Earth. It contains 1061 images
(617 for training and 444 for testing). The image size ranges
from 300 × 300 to 1500 × 900. We resize all images to 800
× 800.

2. UCAS-AOD [9] is an aerial image dataset for oriented
aircraft and car detection which contains 1510 images includ-
ing 1000 airplane images and 510 car images. We randomly
divide it into the training set, validation set, and test set as
5:2:3.

B. Results on GF2UBS

Table I compares the detection accuracy results of TOD-
Net with state-of-the-art object detection algorithms on the
GF2UBS dataset. We used RetinaNet as the baseline for our
model, with the baseline accuracy reaching only 56.2%. Under
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Fig. 4. Data examples of GF2UBS.

the same experimental configuration, TOD-Net increased the
accuracy by 13.6%, which is quite impressive. This confirms
the applicability and effectiveness of the proposed method in
this paper.

When using more complex backbones for feature extraction,
TOD-Net achieved a test accuracy of 71.3% on the GF2UBS,
significantly outperforming other compared algorithms and
achieving the fastest inference speed. Additionally, when using
smaller image sizes as the benchmark for model training and
testing, the mAP of TOD-Net further improved. This is because
the model can capture more detailed spatial information despite
reducing the network input size increases the overall inference
time.

When focusing on the detection efficiency of tiny targets,
the method proposed in this paper also achieved significantly
better accuracy compared to other models. We evaluated the
mAP-tiny of targets with pixel areas smaller than 30 across dif-
ferent algorithms. The performance of TOD-Net far surpassed
that of the other methods, reaching a maximum of 40.1%.
Although this result is not entirely satisfactory, it highlights the
considerable difficulty in detecting small targets in the given
scenes, suggesting there is still significant room for future
improvement.

C. Comparison with State-of-Art Methods

To verify the generalizability of the method proposed in
this paper, we also conducted validation on two additional
public remote sensing datasets. On the HRSC2016 dataset,
we compared our method with more state-of-the-art object
detection algorithms, as shown in Table II and Table III. The

TABLE I
COMPARISONS WITH STATE-OF-THE-ART DETECTORS ON GF2UBS. BEST

RESULTS ARE IN BOLD. RUNTIMES REPRESENTS THE TIME CONSUMED
FOR MODEL INTERFERENCE OF TEST DATASET.

Methods Backbone Input Size mAP-tiny mAP-overall runtimes (s)

S2A-Net[13] ResNet50 2000×2000 28.6 61.3 432.9
AOPG [14] ResNet50 2000×2000 30.1 62.8 476.8
ReDet [6] ResNet50 2000×2000 31.2 64.6 502.7

O-RCNN [15] ResNet50 2000×2000 26.3 56.9 496.3

Baseline (RetinaNet) ResNet50 2000×2000 24.6 56.2 465.4
TOD-Net (ours) ResNet50 2000×2000 39.2 69.8 418.5
TOD-Net (ours) ResNet50 800×800 44.3 76.5 538.5
TOD-Net (ours) ResNet101 2000×2000 40.1 71.3 452.8

1 mAp is calculated below VOC2012 rules.
1 mAP-tiny refers to the detection precision of targets with a pixel area less

than 30.

TABLE II
COMPARISONS WITH STATE-OF-THE-ART DETECTORS ON HRSC2016. NA

DENOTES NUMBER OF ANCHORS. RUNTIMES REPRESENTS THE TIME
CONSUMED FOR MODEL INTERFERENCE OF TEST DATASET.

Methods Backbone Input Size NA mAP (12) runtimes (s)

*R3Det-DCL [16] ResNet101 800×800 - 96.41 134.6
*♢ DAL[1] ResNet101 800×800 3 94.33 163.4
*♢ DRN[5] ResNet101 800×800 - 95.65 154.1

*S2A-Net[13] ResNet50 800×800 1 95.01 128.6
*AOPG [14] ResNet101 800×800 - 96.22 139.8
*ReDet [6] - 800×800 - 97.63 167.1

*O-RCNN [15] ResNet101 800×800 - 97.60 162.3
*CGC-Det[17] ResNet101 800×800 - 97.86 168.3

TOD-Net (ours) ResNet50 800×800 3 97.88 143.5
TOD-Net (ours) ResNet101 800×800 3 98.26 152.8

1 Best results are in bold.
2 * represents the experimental runtimes are obtained from our

local environment. ♢ indicates that the mAP is the result of re-
realization.

results in these tables demonstrate that TOD-Net excels at en-
hancing the model’s fine-grained feature extraction capabilities
for targets in various scenes. This improvement effectively and
consistently enhances the detector to extract robust features
from target locations, thereby increasing the final accuracy.

On the HRSC2016 dataset, using ResNet101, we achieved
a final mAP of 98.26%. On the UCAS-AOD dataset, we ob-
tained the highest performances of 90.64% for car targets and
91.26% for airplane targets. These experimental results clearly
demonstrate that TOD-Net not only performs excellently in
large-scale remote sensing small target tasks but also adapts
well to typical remote sensing target detection tasks in general
application scenarios.

IV. CONCLUSIONS

In this paper, we propose a object detector for tiny objects in
large-scale remote sensing images, named TOD-Net. TOD-Net
employs a coarse-to-fine design and integrates a high-potential
vague region screening strategy called VGS. VGS effectively
expands the search range of detection units by searching
for potential target areas across multiple scale levels and
adjacent units. Additionally, we introduce a centroid distance
metric to match small target positive samples, increasing the
number of positive samples that can be refined during training.
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TABLE III
DETECTION RESULTS ON UCAS-AOD DATASET.

BEST RESULTS ARE IN BOLD.

Methods car airplane mAP

Baseline 0.8322 0.8643 0.8472
YOLOv3-O[18] 0.7463 0.8952 0.8208

Faster R-CNN-O [19] 0.8687 0.8986 0.8836
DAL[1] 0.8925 0.9049 0.8987

Oriented Reppoints [20] 0.8951 0.9070 0.9011
TOD-Net (ours) 0.9064 0.9126 0.9106

Experimental validation of TOD-Net on the large-scale scene
remote sensing tiny target detection dataset GF2UBS shows
an impressive 15.1% increase in the detection mAP for bridge
targets, yielding remarkable results.
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