
2024 Asia Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)

Handling Missing Data in Limited-View
Photoacoustic Tomography Using Compressive

Sensing Algorithm-Based Deep Learning
Mary John and Imad Barhumi

College of Engineering, EECE Department
United Arab Emirates University, Al Ain, Abu Dhabi, 15551, UAE

E-mail: {201990198, imad.barhumi}@uaeu.ac.ae

Abstract—In photoacoustic tomography, missing sensor data
poses a significant challenge for accurate image reconstruction.
This study aims to evaluate various imputation methods to ad-
dress different missing data scenarios, including random missing
data, communication loss, and environmental interference. We
applied mean imputation, median imputation, k-nearest neigh-
bors (KNN), and multivariate imputation by chained equations
(MICE) to these scenarios and assessed their performance using
metrics such as MS-SSIM, SSIM, PSNR, R-squared, NMSE,
and Entropy. Our results demonstrate that the presence of
missing data significantly degrades image quality, with MICE
consistently providing the best reconstruction performance across
all scenarios. In random missing data cases, MICE achieved
the highest SSIM and PSNR values, closely approximating the
no missing data scenario. Similar trends were observed in
communication loss and environmental interference cases, where
MICE outperformed other imputation methods, followed by mean
and median imputation, with KNN generally showing the lowest
performance. These findings suggest that MICE is a robust
method for handling missing data in PAT, enhancing image
reconstruction quality.
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I. INTRODUCTION

Photoacoustic tomography (PAT) [1] is a hybrid imaging
technique that combines the high spatial resolution of optical
imaging with the high contrast of ultrasound imaging. It works
by illuminating tissue with pulsed laser light, which induces
ultrasonic waves due to thermoelastic expansion. These ul-
trasonic waves are then detected by sensors, and the data is
used to reconstruct images of the tissue’s optical absorption
properties. PAT has shown promise in various biomedical
applications, including cancer detection, brain imaging, and
functional imaging of blood oxygenation [2].

However, the quality of PAT images heavily depends on
the completeness and accuracy of the data acquired by the
sensors. In practical scenarios, missing data is a common
issue due to various factors such as sensor failures, com-
munication losses, environmental interferences, and scheduled
maintenance. These missing data points can degrade the quality
of the reconstructed images, making it challenging to achieve
accurate diagnostics. To address this, researchers have explored

various imputation methods to fill in the missing data before
performing image reconstruction.

A. Motivation and Objectives

The primary motivation for this research is to enhance the
robustness of PAT image reconstruction in the presence of
missing data. Given the critical role of accurate imaging in
medical diagnostics, it is essential to develop methods that
can effectively handle missing data scenarios and still produce
reliable images. This study aims to investigate the effectiveness
of various imputation methods—mean, median, KNN, and
MICE—in the context of PAT imaging. By simulating practical
missing data scenarios, such as random sensor failures, com-
munication losses, and environmental interferences, we seek
to evaluate and compare the performance of these imputation
methods. Furthermore, we aim to leverage compressive sensing
algorithm-based deep learning network, specifically relaxed
basis pursuit based on ADMM (Alternating Direction Method
of Multipliers) [3], to reconstruct images from the imputed
data. This network was initially trained on full-view sensor
data and subsequently adapted through transfer learning to
handle limited-view semicircular arrangements.

The objectives of this research are:

• To simulate various practical missing data scenarios in
PAT.

• To apply and compare different imputation methods for
handling missing data.

• To evaluate the performance of these imputation meth-
ods using metrics such as MS-SSIM, SSIM, PSNR, R-
squared, NMSE, and entropy.

• To demonstrate the effectiveness of deep learning-based
image reconstruction method in producing high-quality
PAT images from imputed data.

• To provide insights into the strengths and limitations of
each imputation method in the context of PAT.

By achieving these objectives, this research aims to contribute
to the development of more reliable and robust PAT imaging
techniques that can be used in clinical practice, ultimately
improving patient outcomes through better diagnostics.



II. RELATED WORKS

Handling missing sensor data is a critical challenge in
various imaging applications, including PAT. Numerous meth-
ods have been developed to address this issue, each with its
unique approach and strengths. In [4] a comprehensive review
of various imputation methods for missing sensor data is
provided, categorizing them based on missingness patterns and
properties. This foundational review highlights the diversity
of imputation strategies and sets the stage for exploring more
advanced techniques. Iterative Imputing Network is introduced
in [5], which captures latent temporal dynamics to recover
missing sensor data. This method leverages complex temporal
patterns, showing significant improvements in applications like
air quality and meteorological datasets. In [6] the authors pro-
posed a framework to enhance MICE specifically for large gaps
of missing data. Their approach involves reshaping the sensor
data to exploit correlations between missing and observed
values, splitting the data into extreme and normal values, and
building separate MICE models for each. Several machine
learning methods for imputing missing sensor data in cardiac
imaging datasets are evaluated in [7], including mean impu-
tation, KNN, C4.5 decision trees, and self-organizing maps.
This study provides valuable insights into the effectiveness of
various imputation techniques in medical imaging contexts.
In [8] a novel deep learning-based framework for imputing
missing values in sensor data is developed, specifically ad-
dressing the challenges of large segment imputation. Their
multistage imputation strategy incorporates adaptive evaluation
metrics and dynamic data length adjustment. A probabilistic
method for imputing missing sensor data in multi-sensory
activity recognition, using a conditional Gaussian distribution
and exploiting correlation among classifier outputs is proposed
in [9]. In [10] an efficient imputation technique based on k-
means clustering for IoT sensor networks is presented. Their
Best Fit Missing Value Imputation (BFMVI) method partitions
incomplete data into clusters, estimates missing values using a
random forest model trained on observed data within each clus-
ter, and selects the most suitable imputation technique based
on an error score function. These studies highlight the diverse
approaches to imputation, from simple statistical methods to
sophisticated machine learning techniques, providing a solid
foundation for exploring the application of these imputation
techniques to PAT imaging to enhance robustness and accuracy
of image reconstruction in the presence of missing data.

III. METHODOLOGY

This section details the methodology used in our study,
encompassing the compressive sensing algorithm, the deep
learning network, the simulation of missing data scenarios, and
the evaluation metrics employed to assess the performance of
the imputation methods and image reconstruction.

A. Compressive Sensing Algorithm and Deep Learning Net-
work

In this study, we employ a compressive sensing (CS) [11]
algorithm-based deep learning network to reconstruct PAT

images. Specifically, we use a relaxed basis pursuit algorithm
based on the ADMM. Compressive sensing leverages the
sparsity of signals to reconstruct high-quality images from
under-sampled data, making it particularly effective for PAT
where complete data acquisition is often challenging.

The significance of the rBP-ADMM (relaxed Basis Pursuit
- ADMM) algorithm [12], [13] lies in its ability to address
the complex inverse problem in PAT with high efficiency
and robustness. The algorithm offers several advantages over
traditional methods:

1) Robustness to Noise: rBP-ADMM algorithm integrates
regularization terms that mitigate the impact of noise,
resulting in more accurate and stable image reconstruc-
tions.

2) Iterative Refinement: It iteratively updates the solution,
progressively refining the image, which is beneficial for
dealing with the ill-posed nature of the PAT inverse
problem.

3) Efficient Convergence: By splitting the optimization
problem into smaller sub-problems, ADMM framework
ensures faster convergence compared to traditional op-
timization methods, making it suitable for real-time
applications.

4) Handling Incomplete Data: It effectively deals with
missing or incomplete data, a common issue in practical
PAT scenarios due to sensor limitations or failures.

The deep learning network architecture incorporates multi-
ple layers, including convolutional layers, activation functions,
and fully connected layers, to facilitate feature extraction and
accurate image reconstruction. The network is initially trained
on full-view sensor data to learn comprehensive patterns and
features. Transfer learning is then applied to adapt the net-
work for limited-view semicircular arrangements, enabling the
model to leverage prior knowledge and fine-tuned for scenarios
with partial data. The rBP-ADMM algorithm is depicted as
in Algorithm 1, where x is the image to be reconstructed in
vectorized form, y is the pressure sensor data, and M is the
sensing matrix.

Algorithm 1 rBP-ADMM

Require: : ρ, α, γ, r, τ,y,M, kmax, tol.
Initialize: k = 0, x0 = z0 = u0 = 0, NMSE = ∞,
while k < kmax or NMSE > tol do

xk+1 ←
(
ρI+ αMTM

)−1 (
ρzk − ruk + αMTy

)
zk+1 ← S γ

ρ

(
uk

ρ + xk+1
)

uk+1 ← uk + τ
(
xk+1 − zk+1

)
NMSE ← ∥xk+1−xk∥2

2

∥xk+1∥2
2

k ← k + 1
end while

x∗ = xk

The unrolled deep learning algorithm, termed U-rBP-
ADMM, is designed based on the architecture of the rBP-
ADMM algorithm, with iterations transformed into iteration
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Fig. 1: kth IB in U-rBP-ADMM network diagram.

blocks that perform similar operations to the iterative version
using deep network layers. The updates at the (k + 1)th
intermediate block (IB) of the U-rBP-ADMM deep learning
network [14] are designed as follows:

xk+1 = C1kz
k +C2ku

k +W1ky, (1)

zk+1 = Sβk
(ζku

k + xk+1), (2)

uk+1 = uk + τk(x
k+1 − zk+1). (3)

Here, C1k resembles (I + α
ρM

TM)−1, C2k resembles
(ρI+αMTM)−1r, and W1k resembles ( ραI+MTM)−1MT .
The matrices C1k and C2k are learnable weight matrices. The
constant 1

ρ is implemented using ζk, a learnable parameter.
The shrinkage operator with threshold value γ

ρ is implemented
using the layer Sβk

(·), with βk as the learnable threshold value,
specific to each IB.

The architecture and iterative updates are visually repre-
sented in Figure. 1

B. Simulation of Missing Data Scenarios

To evaluate the performance of the imputation methods, we
simulate practical missing data scenarios commonly encoun-
tered in PAT and other imaging applications. The following
scenarios are considered:

• Random Sensor Failures: Sensors can fail randomly due
to hardware malfunctions or temporary issues, leading to
sporadic missing data across the sensor array. To simulate
this, we randomly set a certain percentage of data points
to zero. For instance, if 10% of the data is considered
missing, we randomly select 10% of the total data points
and set their values to zero.

• Temporary Communication Loss: Intermittent commu-
nication issues can cause temporary loss of data from
certain sensors. It simulated by setting blocks of 10
consecutive samples to zero across all sensors to mimic
temporary communication interruptions. This method re-
sulted in approximately 14.29% of the data being set to

zero, helping to analyze the impact of systematic data loss
on image reconstruction quality.

• Environmental Interference: Environmental factors such
as obstructions or external noise can interfere with cer-
tain sensors, causing localized data loss. Environmental
interference was simulated by setting data for specific
sensors (5, 15, and 25) to zero for samples 30 to 45,
mimicking interference in localized regions. This resulted
in approximately 8% of the sensor data being lost.

These scenarios help in understanding the impact of differ-
ent types of missing data on the reconstruction quality and the
effectiveness of various imputation methods.

C. Imputation Methods

To address the missing data in the simulated scenarios, we
employ and compare several imputation methods:

• Mean Imputation: This simple technique involves re-
placing missing data points with the mean value of the
observed data. Although it is easy to implement, it does
not account for the relationships between data points and
can introduce bias.

• Median Imputation: Similar to mean imputation, but
missing values are replaced with the median of the ob-
served data. Median imputation is more robust to outliers
compared to mean imputation.

• KNN Imputation: KNN imputation replaces missing
values based on the k-nearest neighbors’ observed data
points. This method considers the relationships between
data points and can provide more accurate imputations
than mean or median imputation.

• MICE: MICE is an advanced imputation technique that
performs multiple imputations by creating several plau-
sible imputed datasets and then averaging the results. It
accounts for the uncertainty around missing values and
leverages the correlations among data points.

These methods are applied to the simulated datasets to fill
in the missing values, and their performance is compared in
terms of reconstruction quality.

D. Evaluation Metrics

To assess the performance of the imputation methods and
the overall image reconstruction quality, we use the following
evaluation metrics:

• Multi-Scale Structural Similarity Index (MS-SSIM):
MS-SSIM evaluates the structural similarity between the
reconstructed image and the original image at multiple
scales. It provides a comprehensive measure of image
quality by considering luminance, contrast, and structural
information.

• Structural Similarity Index (SSIM): SSIM measures
the similarity between two images based on luminance,
contrast, and structure. It is a widely used metric for
assessing image quality and is sensitive to changes in
image structure.
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• Peak Signal-to-Noise Ratio (PSNR): PSNR measures
the ratio between the maximum possible value of a signal
and the power of corrupting noise. It is commonly used to
evaluate the quality of reconstructed images, with higher
values indicating better quality.

• R-squared (R²): R² quantifies the proportion of variance
in the observed data that is predictable from the recon-
structed data. It is a measure of goodness-of-fit, with
values closer to 1 indicating better fit.

• Normalized Mean Squared Error (NMSE): NMSE
measures the mean squared error between the recon-
structed and original images, normalized by the variance
of the original image. Lower values indicate better recon-
struction accuracy.

• Entropy: Entropy measures the randomness or complex-
ity of the image. In the context of image reconstruction, it
provides insights into the information content and quality
of the reconstructed image.

These metrics provide a comprehensive evaluation of the
imputation methods and the overall performance of the im-
age reconstruction process. By comparing the results across
different imputation techniques and missing data scenarios,
we aim to identify the most effective methods for handling
missing data in limited-view circle sensor arrangements in PAT
imaging.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results obtained from
the proposed methodology. We evaluate the performance of
the imputation methods under various missing data scenarios
and assess the reconstruction quality of PAT images using the
proposed deep learning network.

A. Experimental Setup
The experiments were conducted using a limited-view semi-

circle sensor arrangement, as shown in Figure 2. The setup
consists of 71 sensors arranged in a semicircular pattern, cap-
turing 75 samples each. This arrangement simulates practical
scenarios [15] where complete circular data acquisition is not
feasible.

The data used for the experiments was subjected to different
missing data scenarios, including random sensor failures, tem-
porary communication loss, and environmental interference.
The missing data was then imputed using various imputation
methods such as mean, median, KNN, and MICE. The imputed
data was subsequently fed into the trained deep learning
network to reconstruct the PAT images. The performance
analysis were conducted to reconstruct three test images as
shown in Figure 3.

B. Results and Discussion
Analysis of the three cases of practical missing data scenar-

ios are discussed in this section. Table I presents the results for
Images 1, 2, and 3 with random data missing, communication
loss, and environmental interference. The ”No missing” case,
where there is no missing data, serves as the reference for
optimal image reconstruction quality.

TABLE I: U-rBP-ADMM performance with missing data.
Case MS-

SSIM
SSIM PSNR R2 NMSE Entropy

Random Data Missing

Image 1

No missing 0.9730 0.7768 31.99 0.9652 0.01968 5.664
Missing 0.9455 0.6529 28.27 0.9213 0.04454 5.725
Mean Imputed 0.9599 0.6943 29.91 0.9469 0.03007 5.797
Median Imputed 0.9598 0.6968 29.88 0.9455 0.03086 5.726
KNN Imputed 0.9415 0.6379 28.61 0.9297 0.03981 5.961
MICE Imputed 0.9664 0.7411 31.13 0.9573 0.02420 5.668

Image 2

No missing 0.9627 0.7130 30.01 0.9654 0.02020 6.128
Missing 0.9313 0.5917 26.54 0.9262 0.04305 6.134
Mean Imputed 0.9487 0.6312 28.24 0.9501 0.02910 6.246
Median Imputed 0.9492 0.6387 28.31 0.9496 0.02936 6.129
KNN Imputed 0.9088 0.5315 25.78 0.9140 0.05016 6.425
MICE Imputed 0.9570 0.6857 29.27 0.9596 0.02355 6.199

Image 3

No missing 0.9505 0.6433 28.42 0.9369 0.04489 5.320
Missing 0.9146 0.5313 26.25 0.8984 0.07235 5.395
Mean Imputed 0.9295 0.5545 27.08 0.9182 0.05826 5.510
Median Imputed 0.9275 0.5558 27.01 0.9155 0.06018 5.448
KNN Imputed 0.9132 0.5243 26.51 0.9058 0.06707 5.532
MICE Imputed 0.9409 0.6017 27.84 0.9281 0.05116 5.343

Communication Loss

Image 1

Missing 0.8973 0.5496 25.34 0.8498 0.08505 5.797
Mean Imputed 0.9279 0.6186 27.66 0.9140 0.04867 5.991
Median Imputed 0.9317 0.6264 27.85 0.9160 0.04755 5.882
KNN Imputed 0.8846 0.5334 25.70 0.8655 0.07614 6.099
MICE Imputed 0.9161 0.5601 27.77 0.9051 0.05374 5.847

Image 2

Missing 0.8822 0.4844 23.78 0.8607 0.08121 6.146
Mean Imputed 0.9151 0.5397 25.58 0.9106 0.05213 6.328
Median Imputed 0.9197 0.5511 25.65 0.9104 0.05225 6.224
KNN Imputed 0.8443 0.4482 23.03 0.8407 0.09289 6.445
MICE Imputed 0.8757 0.4701 24.54 0.8821 0.06873 6.334

Image 3

Missing 0.8906 0.4714 25.01 0.8616 0.09850 5.323
Mean Imputed 0.9133 0.5092 26.42 0.9057 0.06715 5.624
Median Imputed 0.9110 0.5156 26.21 0.9000 0.07122 5.548
KNN Imputed 0.8859 0.4660 24.95 0.8679 0.09405 5.664
MICE Imputed 0.8909 0.4614 25.54 0.8801 0.08537 5.719

Environmental Interference

Image 1

Missing 0.9665 0.7540 31.13 0.9580 0.02376 5.645
Mean Imputed 0.9685 0.7533 31.66 0.9627 0.02111 5.710
Median Imputed 0.9697 0.7582 31.72 0.9632 0.02084 5.699
KNN Imputed 0.9575 0.7225 31.02 0.9572 0.02422 5.764
MICE Imputed 0.9523 0.7066 30.67 0.9515 0.02745 5.744

Image 2

Missing 0.9570 0.6920 29.56 0.9614 0.02252 6.084
Mean Imputed 0.9564 0.6833 29.64 0.9625 0.02189 6.132
Median Imputed 0.9590 0.6936 29.77 0.9634 0.02136 6.120
KNN Imputed 0.9181 0.6073 27.31 0.9372 0.03662 6.222
MICE Imputed 0.9093 0.5921 26.89 0.9285 0.04167 6.227

Image 3

Missing 0.9489 0.6353 28.37 0.9360 0.04559 5.304
Mean Imputed 0.9468 0.6221 28.25 0.9348 0.04640 5.380
Median Imputed 0.9458 0.6175 28.23 0.9343 0.04677 5.376
KNN Imputed 0.9469 0.6228 28.27 0.9349 0.04634 5.358
MICE Imputed 0.9469 0.6251 28.35 0.9349 0.04634 5.303
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Fig. 2: Limited-View semicircle sensor arrangement.

(a) Image 1 (b) Image 2 (c) Image 3

Fig. 3: Test images.

1) Random Data Missing: The ”No missing” case consis-
tently shows the highest values across all metrics, indicating
the best quality reconstruction. In the presence of missing
data, there is a significant drop in image quality. Among the
imputation methods, the ”MICE Imputed” case provides the
best performance overall, closely related to the no missing
data scenario. For instance, in Image 1, the ”No missing”
case has the highest MS-SSIM (0.9730), SSIM (0.7768),
PSNR (31.99), and R-squared (0.9652), and the lowest NMSE
(0.01968) and Entropy (5.664). The ”MICE Imputed” case
shows the best performance among the imputed cases, with
MS-SSIM of 0.9664, SSIM of 0.7411, and PSNR of 31.13.
The ”Mean Imputed” and ”Median Imputed” cases show com-
parable performance, demonstrating noticeable improvement
over the missing data case but not reaching the level of MICE
imputation. The ”KNN Imputed” case generally shows the
lowest performance among the imputation methods tested.

2) Communication Loss: Among the imputation methods
evaluated, the ”MICE Imputed” method consistently yielded
the best results, closely resembling the no missing data
scenario. For example, in Image 1, the ”MICE Imputed”
case achieved the highest MS-SSIM (0.9161), SSIM (0.5601),
PSNR (27.77), R-squared (0.9051), and maintained a lower
Entropy (5.847) compared to other imputation methods. The
”Mean Imputed” and ”Median Imputed” methods showed
comparable performance, typically being the second-best and
third-best methods, respectively. They improved image quality
over the ”Missing” case but did not perform as well as MICE.
The ”KNN Imputed” method consistently showed the lowest

performance among the imputation methods tested, indicating
its relative ineffectiveness in handling communication loss
scenarios.

3) Environmental Interference: From the analysis of all
images, it is clear that the ”MICE Imputed” method consis-
tently provides the best results, closely approximating the no
missing data scenario. For example, in Image 1, the ”MICE
Imputed” case achieves the highest performance with MS-
SSIM of 0.9523, SSIM of 0.7066, PSNR of 30.67, R-squared
of 0.9515, and entropy of 5.744. The ”Mean Imputed” and
”Median Imputed” cases also show substantial improvements
over the missing data scenario, with ”Median Imputed” slightly
outperforming ”Mean Imputed”. The ”KNN Imputed” case
generally shows the least effective performance, often close
to or slightly better than the ”Missing” data case.

Overall, from the analysis, it is evident that missing data,
whether from random data loss, communication loss, or en-
vironmental interference, significantly impacts the quality of
image reconstruction in photoacoustic tomography. In all sce-
narios, the ”No missing” data case provides the best image
reconstruction quality across all images. When data is missing,
there is a substantial drop in image quality. Among the
imputation methods, ”MICE Imputed” consistently yields the
best results, closely approximating the no missing data case in
all types of missing data scenarios. The ”Mean Imputed” and
”Median Imputed” cases show comparable results, better than
the missing data scenario but not as good as MICE. The ”KNN
Imputed” case generally shows the lowest performance among
the imputation methods tested. While environmental interfer-
ence impacts image quality, its effect is less severe compared
to random data loss and communication loss. Overall, ”MICE
Imputed” emerges as the most effective imputation method,
followed by ”Mean Imputed” and ”Median Imputed,” with
”KNN Imputed” being the least effective.

V. CONCLUSION

In this study, we evaluated the effectiveness of various
imputation methods—mean imputation, median imputation,
KNN, and MICE for handling missing sensor data in PAT
under different scenarios: random missing data, communica-
tion loss, and environmental interference. Our findings indicate
that missing data significantly degrades image reconstruc-
tion quality in PAT. Among the tested imputation methods,
MICE consistently outperformed others, yielding the best
image reconstruction metrics across all scenarios. Mean and
median imputations provided moderate improvements, while
KNN generally exhibited the lowest performance. These re-
sults highlight the importance of selecting robust imputation
strategies, such as MICE, to mitigate the impact of missing
data on PAT imaging. Future research should explore further
optimization of imputation techniques and their application to
various imaging contexts.
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