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Abstract—We propose a Speaker-Consistent Speech-to-Speech
Translation (SC-S2ST) system that effectively retains speaker-
specific information. While the paradigm of Speech-to-Unit
Translation (S2UT) followed by Unit-to-Waveform Vocoder has
become a mainstream for End-to-End S2ST systems, due to the
substantial semantic content carried by discrete units, this ap-
proach primarily captures semantic information and often results
in synthesized speech that lacks speaker-specific characteristics
such as accent and individual voice qualities. Existing S2UT sys-
tems with style transfer face the issue of high inference latency. To
address this limitation, we introduced a Speaker-Retention Unit-
to-Mel (SR-UTM) framework designed to capture and preserve
speaker-specific information. We conducted experiments on the
CVSS-C and CVSS-T corpora for Spanish-English and French-
English translation tasks. Our approach achieved BLEU scores
of 16.10 and 21.68, which are comparable to those of the baseline
S2UT system. Furthermore, our SC-S2UT system excelled in
preserving speaker similarity. The speaker similarity experiments
showed that our method effectively retains speaker-specific in-
formation without significantly increasing inference time. These
results confirm that our primary approach successfully achieve
speaker-consistent speech-to-speech translation.

I. INTRODUCTION

Speech-to-speech translation (S2ST) refers to the process of
converting spoken language in one language into spoken lan-
guage with the same meaning in another language, facilitating
communication between speakers of different languages. Tra-
ditional cascade S2ST systems operate by first using automatic
speech recognition (ASR) to transcribe the source speech,
followed by machine translation (MT) to translate the source
text into the target text, and finally using text-to-speech (TTS)
to synthesize the target speech. More recently, end-to-end
speech-to-text (S2T) models[1] have been employed to replace
the ASR and MT components, reducing the accumulation of
errors.

However, the cascade systems mentioned above face signif-
icant challenges, such as long inference times and the large

0This work was supported by JST SPRING, Grant Number JPMJSP2114
and JSPS KAKENHI JP 23K20725 and JP24H00085

parameter size due to multiple models, making them impracti-
cal for industrial applications. Consequently, researchers have
shifted their focus to E2E S2ST systems. Translatotron was
the first proposed E2E S2ST, utilizing auxiliary recognition
and attention-based sequence-to-sequence multitask learning to
transform spectrograms from the source language to the target
speech spectrograms[2]. Subsequently, Translatotron2, which
utilizes a two-pass approach, was proposed[3]. This method
establishes attention between the source language acoustic
features and the target language phonemes, thereby reducing
the complexity of directly predicting the target spectrogram.
Additionally, phoneme-level content features are employed
during inference, enhancing performance compared to the
original Translatotron.

The Translatotron series of S2ST primarily focuses on
transforming the spectrogram of the source language into the
spectrogram of the target language. However, directly building
a translation model between two spectrograms is exceptionally
challenging due to the high dimension and complexity of
spectrogram data. In recent years, with the advent of self-
supervised learning, a new approach has emerged, which
involves extracting speech representations using models like
HuBERT[4] to capture rich and detailed features of the speech
signal. These representations are then clustered to construct
discrete units, which serve as a more manageable and seman-
tically meaningful intermediate representation. A combination
of unit-to-waveform conversion and advanced vocoders [5] has
gradually become mainstream [6], [7].

Some previous works have applied style transfer in direct
S2UT[8], [9]. These methods utilize an acoustic language
model to generate units containing speaker information, which
are then combined with semantic units and finally converted to
speech using a vocoder. However, this approach used an auto-
regressive method to generate units greatly increases inference
time. Additionally, the large parameter size of the Residual
Vector Quantization model results in reduced efficiency. To
address these issues, we propose our Speaker-Retention Unit-
to-Mel framework(SR-U2M), which enhances efficiency.



There are two main motivations for our work. Firstly, we
found that mel-spectrograms, compared to units, have higher
dimensionality and contain richer information, making it easier
to retain speaker information. Secondly, we were inspired by
FastSpeech[10], a non-auto-regressive text-to-speech method
that quickly synthesizes mel-spectrograms from discrete units.

Therefore, we introduce a novel structure SR-U2M, which
integrates the speaker’s reference utterance along with the
speech units into the model. The SR-U2M framework first
extracts speaker information using a speaker adapter, and
then embeds this speaker information into the speech units.
The combined information is subsequently converted into a
mel-spectrogram through a unit-to-mel structure, and finally
transformed into speech. This approach not only effectively
preserves the speaker’s unique characteristics but also signifi-
cantly enhances inference efficiency.

The rest of this paper is organized as follows. First, we
introduce related work in the next section. Then, we describe
our SC-S2ST system and SR-U2M in Section III. Following
this, we present and analyze our experimental results in Section
IV. Section V summarizes with the experimental results and
analysis. Finally, Section VI is the conclusion.

II. RELATED WORKS

A. Direct S2UT

Lee et al. were the first to propose a discrete unit-based
S2ST system, utilizing a Transformer Encoder-Decoder struc-
ture to directly establish the relationship between the source
mel spectrogram and the target discrete units[6]. This structure
is very similar to that of S2T and employs the intermediate
inputs of the encoder to conduct a multitask auxiliary recog-
nition. They used HuBert to extract speech representations
of the target language, followed by k-means clustering to
derive the target language’s discrete units. Leveraging the self-
supervised learning’s characteristic of not requiring paired text,
they also proposed S2ST for unwritten languages[11], [12],
which similarly only required the target language’s discrete
units rather than text. To address the issue of varying units
for different speakers, Lee et al. further introduced norm-unit-
based S2ST, which was applied to textless real data, thereby
enhancing the robustness and applicability of the system[7].
Popuri et al. used pre-trained wav2vec instead of a transformer
encoder to extract acoustic features, improving the model’s
effect[13]. Therefore, in our research, we also apply the S2UT
method using pretrained wav2vec as the encoder. We will
introduce the structure of our S2UT in the next section.

B. Speaker Information Retention

Preserving speaker-specific information during speech trans-
lation has been a long-standing challenge. Recent advance-
ments have leveraged techniques from speaker verification to
enhance multi-speaker speech synthesis. Jia et al. integrated
a speaker encoder to extract speaker features then combined
with the synthesizer encoder, facilitating the retention of
speaker identity in the synthesized speech[14]. Translatotron
also employed a similar approach by adding a speaker encoder

to extract speaker information[2]. Therefore, we adopted this
structure as well, with the difference being that we replaced
the construction of the speaker encoder. Our method utilizes
an ECAPA-TDNN-based speaker encoder, which has demon-
strated superior performance in speaker verification tasks[15].
The detailed architecture of the ECAPA-TDNN will be elab-
orated in the next section.

III. SPEAKER-CONSISTENT SPEECH-TO-SPEECH
TRANSLATION

A. Model Structure

Fig.1 illustrates the overall architecture of our proposed SC-
S2ST. From left to right, it shows the overall framework, the
SR-U2M structure, and the speaker adapter structure within
SR-U2M. The source language speech is input into the S2UT
module, which generates a sequence of speech units in the
target language. These units are then processed by the Length
Predictor to match the actual sequence. Simultaneously, the
source speech is input into the Speaker Adapter to extract
speaker-specific information. The SR-U2M module integrates
the speech units and the extracted speaker information to
generate a mel-spectrogram of the target speech, retaining
the original speaker’s characteristics. Finally, a mel vocoder
converts the mel-spectrogram into the waveform of the target
speech.

B. S2UT Model

Different from previous S2UT literature that used X-former
(e.g., Transformer, Conformer)[6], [7], [11], [12], we utilize
a pre-trained wav2vec2 model as the encoder. Wav2vec2 can
extract richer speech representations from the original audio.
For the decoder, we use the same Transformer decoder as
others. Before training, we use the pre-trained HuBERT model
to extract speech representations of the target language and
then apply k-means clustering to obtain discrete units. Follow-
ing Lee et al. we use a stacking method to convert adjacent
identical units into a single unit, significantly speeding up both
training and inference times[6]. Therefore, after S2UT, we
need to add a length predictor to restore the units. Our length
predictor is also derived from FastSpeech2, which consists
of two 1D-convolutional layers, each with ReLU activation,
followed by layer normalization and dropout, and a linear
layer[16].

C. Speaker-Retention U2M

Our unit-to-mel approach is inspired by text-to-speech
(TTS) systems, which convert discrete representations such
as phonemes and text into mel-spectrograms. Examples of
such systems include Tacotron and its variants[17], [18]. How-
ever, Tacotron uses an auto-regressive method, which is time-
consuming during inference. To address this issue, we chose
a FastSpeech-like structure that uses a non-auto-regressive
approach to convert units into mel-spectrograms.

For the unit encoder, we employ the Feed-Forward Trans-
former (FFT) structure from FastSpeech[10]. This structure
is similar to the encoder in the Transformer[19] model but



Fig. 1. The overall architecture for Speaker-Consistent Speech-to-Speech Translation.

uses a 2-layer 1D convolutional network with ReLU activation
instead of a 2-layer dense network, which has been shown
to be more effective. Our mel-spectrogram decoder employs
the traditional Transformer decoder structure. The specific
parameters and configurations of our model will be detailed
in the next section.

D. Speaker Adapter

The speaker adapter in our system is responsible for ex-
tracting speaker-specific information while disregarding other
content information. Achieving this task primarily involves
speaker identification[20]. The speaker adapter is designed to
isolate and capture speaker-specific characteristics from the
input speech signal. Our speaker adapter uses the ECAPA-
TDNN architecture in its entirety to extract high-level speaker
embeddings[15]. The structure is shown in subfigure(c) in
Fig.1, which begins with a 1-dimensional convolutional layer
followed by ReLU activation and batch normalization, captur-
ing temporal features from the input speech signal. This is fol-
lowed by three SE-Res2Blocks, which integrate Squeeze-and-
Excitation mechanisms within residual blocks to emphasize
important speaker-specific features. Another 1-dimensional
convolutional layer with ReLU activation further refines these
features. Attention-based statistical pooling then aggregates the
most relevant frames into a fixed-dimensional speaker embed-
ding, normalized by batch normalization. The final fully con-
nected layer, also followed by batch normalization, transforms
these aggregated features into the final speaker embedding,
effectively encapsulating the unique vocal characteristics of
the speaker.

IV. EXPERIMENTS

A. Dataset

We performed our experiments using Spanish to English
and France to English in CVSS multilingual speech-to-
speech translation corpus[21]. The CVSS corpus includes
two datasets: CVSS-C, which contains multi-speaker record-
ings in various languages translated into the voice of a
single female English speaker, and CVSS-T, which contains
multi-speaker recordings translated into multi-speaker En-
glish speech, maintaining similar pronunciation characteristics
across both datasets. The number of samples and their respec-
tive durations are detailed in TABLE I.

We utilize the CVSS-T corpus to train our SR-U2M model
because it provides the necessary multi-speaker target speech
mel-spectrogram required for our approach. Conversely, the
CVSS-C corpus is employed to train the S2UT model. Since
discrete units only encapsulate semantic information, extract-
ing these units from the same speaker’s voice, as provided in
the CVSS-C corpus, yields better performance.

B. System Implementation

1) SC-S2UT Model: we used the pre-trained HuBERT
model1 trained on LibriSpeech[22] and follow illustrate k-
means with K = 100 to extract sixth layers representation to
discrete unit. We utilized the pre-trained wav2vec to extract
acoustic feature from source waveform, which trained on the
es unlabeled subset of VoxPopuli corpus[23] for Spanish2,
and trained on 14K hours of French3[24]. We did not employ
multi-task learning in our experiments as focus of our study
is to compare the extent to which our method can retain

1https://github.com/facebookresearch/fairseq/tree/main/examples/hubert
2https://github.com/facebookresearch/voxpopuli/
3https://huggingface.co/LeBenchmark/wav2vec2-FR-14K-large



TABLE I
STATISTICS (NUMBER OF SAMPLES AND DURATION) OF THE CVSS SPANISH-ENGLISH AND FRANCE-ENGLISH DATASET

CVSS-C CVSS-T
Es-En Fr-En Es-En

train dev dev-small test train dev dev-small test train dev test

# samples 79k 13.2k 0.99k 13.2k 20.7k 14.7k 0.49k 14.7k 79k 13.2k 13.2k
source (hrs) 69.5 12.4 1.31 12.4 174 13 0.64 13.3 73.7 13.2 13.3
target (hrs) 113.1 21.8 / 22.7 264.3 21.7 / 23.3 113.1 21.8 22.7

speaker information during the translation process. For SR-
U2M, we compute 80-dimensional mel-spectrogram features
at every 20-ms, making it matching the length of discrete unit.
Hyperparameters of our model is shown in TABLE II.

TABLE II
HYPERPARAMETERS FOR SC-S2ST

Hyperparameter SC-S2ST

S2UT
Decoder

Unit neurons 103
Decoder Block 6

Decoder Hidden 512
Encoder Attention Heads 8

Encoder Dropout 0.1

SR-U2M
Unit-Encoder
Mel-Decoder

Encoder Block 6
Decoder Block 6
Encoder Kernel 31

Hidden 512
Attention Heads 8

Dropout 0.1

Speaker
Adapter

Channels [1024, 1024, 1024, 1024,
3072]

Kernel Sizes [5, 3, 3, 3, 1]
Dilations [1, 2, 3, 4, 1]
Groups [1, 1, 1, 1, 1]

Attention Channels 128

For waveform generation, we used the same unit-based
vocoder as [13] serving as a baseline for comparison. In our
SC-S2UT system, since the final output is a mel-spectrogram,
we employ HiFi-GAN[5] as the vocoder4 and trained with
multispeaker LibriTTS corpus[25].

2) Baselines: We developed two cascaded baselines,
ASR+MT+TTS and S2T+TTS, and one direct S2ST baseline,
which also utilized a pre-trained wav2vec2 model as the
encoder. For the Automatic Speech Recognition (ASR) com-
ponent, we employed wav2vec2 pre-trained on XLSR[26] and
fine-tuned it with Connectionist Temporal Classification (CTC)
for French5 and Spanish6 speech recognition. For Machine
Translation (MT), we used a pre-trained transformer model for
both French and Spanish7. For Text-to-Speech (TTS), we lever-
aged the Massively Multilingual Speech (MMS) model for En-
glish text-to-speech8[27]. Additionally, we used a transformer-

4https://huggingface.co/speechbrain/tts-hifigan-libritts-16kHz
5https://huggingface.co/facebook/wav2vec2-large-xlsr-53-french
6https://huggingface.co/facebook/wav2vec2-large-xlsr-53-spanish
7https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models
8https://huggingface.co/facebook/mms-tts-eng

based sequence-to-sequence (seq2seq) model for Spanish and
French speech-to-text translation[28]. Furthermore, we imple-
mented a wav2vec-based S2UT[13] and used a Unit-HiFi-
GAN vocoder to convert the units into waveforms.

3) Evaluation: We evaluated the system’s performance in
three aspects: translation quality, speech quality, and speaker
similarity. For translation quality, we followed previous liter-
ature by applying ASR to the speech output and computing
BLEU scores. We used a transformer-based end-to-end model
pre-trained on LibriSpeech, which achieved a WER of 2.27
on the test-clean set9. For translation quality, we used all
development and test data in Spanish and French. For speech
quality evaluation, we used only test data and utilized Mean
Opinion Scores (MOS) to assess the naturalness of the output
speech, with a scale from 1 (worst) to 5 (best). We used
UTMOS based on the methodology described in [29]. We also
conducted speed tests using the baseline for comparison. Our
experiments were performed on an RTX 3090 GPU. Lastly,
for speaker similarity evaluation, we used the CVSS-T corpus,
which features source and target speakers with similar voices.
Additionally, because our SR-UTM structure was trained using
units and target speech, we compared the similarity between
the translated speech and target speech as well as source
speech. We extracted speaker features from the output speech
using the Speaker Adapter structure within our system shown
in subfigure(c) in Fig.1. We then computed normalized Mean
Squared Error (NMSE), Standard Euclidean Distance (SED),
and Cosine Similarity (COS-SIM) between different features
to quantify speaker similarity. Since we trained our SR-UTM
using only Spanish data, for similarity evaluation, we used a
Spanish-English dataset. All our experiments were conducted
using the SpeechBrain framework[30].

V. RESULTS

In this section, we present the results of our experiments
on translation quality and speech quality. The primary goal of
our approach is to maintain the source speaker’s voice while
achieving competitive translation and speech quality.

A. Translation Quality and Speech Quality

TABLE III compares the BLEU scores and MOS scores and
inference time and speedup of our proposed method against the

9https://huggingface.co/speechbrain/asr-transformer-transformerlm-
librispeech



TABLE III
BLEU SCORE AND MOS SCORE AND INFERENCE TIME AND SPEEDUP FOR OUR EXPERIMENT

BLEU Score ↑ MOS Score ↑ Inference Time(s) ↓ Speedup ↑
ES-EN FR-EN ES-EN FR-EN ES-EN FR-EN ES-EN FR-EN

dev test dev test test test dev-small dev-small test test
Direct System

S2UT[13] 15.56 16.54 22.26 22.67 3.31± 0.11 3.29± 0.12 0.77 0.82 1.00× 1.00×
SC-S2UT 15.03 16.10 21.52 21.68 3.26± 0.13 3.20± 0.11 1.00 1.09 0.77× 0.75×

Cascade System
ASR+MT+TTS 22.16 24.36 23.36 23.22 4.07± 0.06 4.10± 0.08 / / / /
ST+TTS 13.82 14.13 21.05 20.72 4.11± 0.08 4.10± 0.07 / / / /

Ground Truth 84.51 88.64 80.51 80.29 4.45± 0.11 4.44± 0.11 4.74 4.75 / /

baseline. The MOS score is presented with the standard devi-
ation. From the results, we observed that the ASR+MT+TTS
cascade system still achieved the highest BLEU scores in
both language pairs and datasets. Our proposed SC-S2UT
method showed slightly lower BLEU scores compared to
the baseline S2UT, indicating a small trade-off in translation
quality when focusing on preserving the speaker’s voice.
However, the gap between our method and S2UT is very small,
demonstrating that while our approach might lose a bit of
content information due to its emphasis on retaining speaker
characteristics, the loss is minimal and does not significantly
impact content comprehension. In TableIII, inference time
represents the average duration of inference, while ground truth
denotes the average duration of the source speech. The results
show that our method only slightly increases the required
inference time, reducing the speed to approximately 0.76
times that of the original. Our proposed SC-S2UT method,
while having a slightly lower Mean Opinion Score (MOS)
compared to the cascade systems, is comparable to the baseline
S2UT, achieving near state-of-the-art speech quality without
significantly increasing inference time, thereby maintaining
efficiency. Overall, our method, with the goal of preserving
speaker information, achieved results very close to the baseline
S2UT system.

B. Speaker Similarity

For speaker similarity evaluation, we compared the similar-
ity between the speech obtained from the translation of source
speech with the source speech and target speech, as shown in
TABLE IV.

Based on the experimental results, we can find that, first,
it is expected that the “tal-tgt” scenario shows the highest
similarity, reflected by the COS-SIM score of 0.84 on the test
set, and the lowest NMSE (0.051) and SED (0.51) values.
These results indicate that our model effectively captures
the characteristics of the target speech, as it was trained
using target speech data. More importantly, the comparison
between the translation and source speech demonstrates higher
similarity and better performance in terms of NMSE and SED
compared to the direct comparison between source and target
speeches. Specifically, the COS-SIM score for “tal-src” (0.79)
is higher than that for “src-tgt” (0.71). Additionally, the NMSE

TABLE IV
SPEAKER SIMILARITY EXPERIMENT RESULTS

NMSE↓ SED↓ COS-SIM↑
Compared Item dev test dev test dev test

tal-src 0.070 0.071 0.60 0.60 0.79 0.79
tal-tgt 0.075 0.051 0.64 0.51 0.84 0.82
src-tgt 0.089 0.072 0.71 0.62 0.77 0.71

“tal-src” refers to the comparison between translation and source
speech, “tal-tgt” denotes the comparison between translation and
target speech, and “src-tgt” represents the comparison between
source speech and target speech. (↑) indicates that higher values
are better, while (↓) mens that lower values are better.

and SED values for “tal-src” are lower than those for “src-tgt”
suggesting that our translation process preserves the speaker-
specific information from the source speech more effectively
than the direct reference between source and target. These
findings suggest that our model excels in maintaining speaker
similarity and preserving crucial speaker-specific attributes
from the source speech.

VI. CONCLUSION

In this paper, we proposed a SR-UTM architecture designed
to preserve the voice characteristics of the source speaker
during speech-to-speech translation with low inference latency.
We conducted experiments on the CVSS-C and CVSS-T
corpora. The results demonstrated that our SC-S2UT system
achieved translation quality comparable to the baseline S2UT
system. Moreover, the speaker similarity experiments con-
firmed that our method effectively retains the speaker-specific
information, without significantly increasing inference time.
This highlights the robustness and efficacy of our approach in
maintaining speaker identity during translation.
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