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Abstract—This paper addresses region source extraction (RSE),
which extracts the entire sound source originating from a speci-
fied target region. To solve this problem, an LCMV-based Scan-
and-Sum Beamformer (LCMV-SS-BF) that can separate a wide
range of continuous regions is proposed. This method is designed
by incorporating the linearly constrained minimum variance
Beamformer (LCMV-BF) as a filter for continuous regions into
the Scan-and-Sum Beamformer (SS-BF) as a filter for wide-area
sound source separation. In addition, an incremental estimation
method using the Woodbury’s formula for LCMV-BF filters is
proposed to improve the processing speed of the filter compu-
tation of the LCMV-BF. Numerical simulation using convolved
sound datasets showed 1) the effectiveness of the LCMV-SS-
BF for surface source separation and 2) the computational cost
advantage of the incremental estimation method.

I. INTRODUCTION

Source enhancement techniques such as beamforming have
been widely studied, and these signal models assume point
sources [1], [2]. However, in reality, ideal point sources do
not exist. Therefore, model errors are inherent in the extraction
of sound sources that exist within a specific area, such as non-
point sound sources like waterfalls, multiple instruments in
an orchestra, and the utterances of a driver whose position is
constantly changing, and the expected performance cannot be
achieved. In addition, when a video camera or telepresence
robot is used to track and direct attention to a specific target,
both audio and visual information can be used, but in most
cases, image and sound are used without linking them. For
example, even if you zoom in on an object in terms of images,
the process of zooming in is not performed in terms of audio,
and only the background noise is processed. As a result,
sounds outside the target region are also recorded. To solve
this problem, it is necessary to link the image and audio and
control the spatial recording range so that only acoustic signals
from the same range as the camera’s image range are recorded
(called audio-visual zooming [3]). Therefore, a new technique
is required to specify a target region and extract all acoustic
signals coming from within the target region. In this paper,
we call this technique ”region source extraction” (RSE) and
treat it as a method for isolating and extracting sound sources
within a specified region.

Beamforming is a technique used to extract point source in
a specific direction using a microphone array and utilizing the
property that each microphone has a different time delay when
the direction of arrival is different [2], [4]. Beamforming is

a point source extraction method that basically specifies the
target direction of the source to be extracted. However, RSE
requires specifying a target region instead of a target direction
and extracting all sound sources within the target region, which
is beyond the capabilities of conventional beamforming.

In order to perform RSE, multi-modal methods using au-
diovisual information are proposed [5]–[9]. These methods
use a camera and microphone to synchronously record images
and sound. Then assuming a strong correlation between the
recorded image and audio, the audio corresponding to the
objects in the image is separated and extracted using deep
learning. However, the system assumes that the target object
is contained in the image, and cannot be used in situations
where the object is hidden or far from the camera. In addition,
a large data set is required to handle various situations.

On the other hand, as methods for RSE using only audio
information, there are techniques such as acoustic zooming and
a Scan-and-Sum beamforming (SS-BF).

Acoustic zooming detects all sound sources in the observed
sound by sound source localization and extracts each detected
source using conventional beamforming. RSE is then achieved
by resynthesizing only the extracted sources within the target
region [10]–[12]. This method requires the number and loca-
tion of sound sources as a priori information, but it is difficult
to provide this information in advance for a set of sound
sources such as an orchestra or a non-point source. The same
problem also occurs with blind source separation [13]–[15]
approaches, which can separate multiple sound sources at once,
to achieve RSE.

An SS-BF [16], [17] achieves RSE by the division of the
target region (each divided small region is called a sub-region)
and the sum of beamformers that extract sources within the
sub-region. the SS-BF specifies a target region, divides it into
sub-regions, then constructs sub-beamformers (sub-BF) for all
sub-regions such that the sources in the center direction of
the subregion are extracted. Finally, it forms a filter for RSE
by the weighting sum of the sub-BFs. This method does not
require the number or location of the sources, but the extraction
performance is degraded for sources located off the center of
the main lobe of each sub-BF. This is due to the fact that sub-
BFs are computed for the extraction of discrete points in the
target region, which means SS-BF is not a filter suitable for
continuous region extraction.

As reflected in the existing studies, the problems of conven-



tional methods include 1) the requirement of image data, 2)
the requirement of the number and location of sound sources,
or 3) the inability to create filters for continuous regions. To
solve these problems, we propose an LCMV-based Scan-and-
Sum Beamformer (LCMV-SS-BF). This method combines a
linearly constrained minimum variance beamformer (LCMV-
BF) with the SS-BF to achieve RSE without using image data,
model training with data sets, or sound source localization as
preprocessing. The LCMV-BF constructs a filter by solving
a minimization problem by placing no-distortion constraints
on multiple directions [18], [19]. It is commonly used to
separate multiple sources at once by simultaneously providing
constraints on multiple source directions. On the other hand,
it has been reported that by giving each constraint point in a
neighborhood, stable extraction is possible for the continuous
region between the constraint points. This property is generally
used to deal with direction-of-arrival mismatch [20]. This
property suggests that LCMV-BF could be used as a filter for
RSE. However, since the constraints of the LCMV-BF must
be placed in the neighborhood to acquire the property, it is
not possible to perform wide region separation. Therefore, we
propose an LCMV-SS-BF, which adopts the structure of the
SS-BF to LCMV-BF. To cope with the huge computational
time required for the SS-BF, we also propose a method to
speed up the calculation of the LCMV-BF by using a recursive
least square (RLS) method to estimate the filters incrementally.

We evaluate the proposed method by numerical simulation.
For the evaluation, we created self-made datasets of mixed-
source speech data by convolving transfer functions to each
audio data from publicly available datasets and summing them
over multiple audio data. Simulation results show that LCMV-
SS-BF outperforms conventional methods for RSE, indicating
the superiority of the proposed method. Furthermore, the
incremental estimation method achieves faster computation.

The contributions presented in this paper are as follows:
• We propose an LCMV-SS-BF as a novel RSE method that

can handle a wide range of continuous regions.
• We propose the use of an incremental RLS method for

LCMV-BF estimation based on the Woodbury’s formula
and introduce it into LCMV-SS-BF to improve its pro-
cessing speed.

• We show the effectiveness of the proposed LCMV-SS-
BF, including its speed-up by the incremental estimation
through simulations using the self-made sound datasets.

II. PRERIMINARY

In this section, we formulate the problem setting of RSE
and the LCMV beamformer on which the proposal is based.

A. problem setting of Region Source Extraction

Fig. 1 shows the coordinate system and the definition of
target sources for RSE. Let the target region be a region
cut off from the spherical coordinate system with azimuth θ
and elevation ϕ, where −R/2 ≤ θ, ϕ ≤ R/2 (the orange
region in Fig. 1), and the noise region be a region, where
−Rnout/2 ≤ θ, ϕ ≤ Rnout/2 and (−Rnin/2 ≤ θ, ϕ ≤ Rnin/2)
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Fig. 1. A target surface region defined as a region that cuts off a portion of
a spherical coordinate system.

(the blue region in Fig. 1). (·)c means the residual phe-
nomenon. These regions are parts of the spherical surface.
Then target sources sin are defined as the sources coming
from within the target region and noise sources sout are the
sources coming from within the noise region (without the
target region). When zω,t,m is the observed signal by the m-
th microphone (m = 1, . . . ,M ) at angular frequency ω, time
frame t, the observed signal zω,t is defined as,

zω,t =
∑
p

ain,p,ω,t · sin,p,ω,t +
∑
q

aout,q,ω,t · sout,q,ω,t, (1)

zω,t = [zω,t,1, · · · , zω,t,M ]T , (2)

ax,ω,t = [e−jωτ1,x , · · · , e−jωτM,x ]T , (3)

where ax,ω,t ∈ CM×1, x ∈ [(in, p), (out, q)] denotes the
transfer function corresponding to the sound source sx,ω,t,
while ·T indicates the matrix transpose operator. τm,x indicates
the time difference of arrival (TDOA) of the m-th microphone
to the reference point in the x-th transfer function, ax,ω,t. Now
the objective of RSE can be written as extracting

∑
p sin,p,ω,t.

B. LCMV Beamformer

When applying beamforming to the observed signal zω,t,
the output signal Yω,t is defined as,

Yω,t = wH
ω,tzω,t, (4)

wω,t = [wω,t,1, · · · , wω,t,M ]T , (5)

where wω,t ∈ CM×1 denotes the filter of a beamformer, while
·H indicates the matrix Hermitian transpose operator. ω and t
will be omitted for simplicity thereafter.

The LCMV-BF is obtained as the solution to a constrained
optimization problem that minimizes the output of the beam-
former with all-pass characteristics for multiple directions as,

w̃ = argmin
w

wHRw (6)

subject to AHw = f ,

A = [a1, · · · ,ak, · · · ,aK ],

ak = [e−jωτ1,k , · · · , e−jωτM,k ]T ,

f = [f1, · · · , fk, · · · , fK ]T ,
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Fig. 2. LCMV-based Scan-and-Sum Beamformer (LCMV-SS-BF)

where R = E[zzH ] ∈ CM×M represents the spatial
correlation matrix of the observed signals. E[zzH ] denotes the
expected value of zzH . A ∈ CM×K is a matrix consisting of
K transfer functions for constraint directions. fk denotes the
all-pass characteristics in the k-th direction.

By solving Eq. (6), the LCMV-BF is formulated as,

w̃ = R−1A(AHR−1A)−1f . (7)

III. PROPOSED METHOD

This section proposes and formulates the LCMV-SS-BF and
the incremental RLS method for LCMV-SS-BF estimation.

A. LCMV-based Scan-and-Sum Beamformer

Fig. 2 shows the abstract of the proposed LCMV-SS-BF. The
target region shown in Fig. 1 is considered as an R×R square
area as shown in Fig. 2. To construct the LCMV-SS-BF, the
target region is divided by small ∆×∆ square regions (sub-
regions) in both θ and ϕ direction to obtain N sub-regions. The
sub-region (i, j) is indicated as ni,j , and the grid point (i, j)
is indicated as p(i,j). After that, a filter for each sub-region
is computed as a sub-BF, and all sub-BFs are summed up to
form the SS-BF. For the sub-BF, the LCMV-BF is selected and
it is designed to separate the entire sub-region with minimal
distortion by constraining the all-pass characteristics at the four
edges of each sub-region. Since the target region is divided into
small sub-regions, the four edges are placed in a neighborhood,
which maintains the robustness to the continuous direction
between each point. Thus, the filter of the proposed LCMV-
SS-BF, wproposed is formulated as,

wproposed =

I∑
i=1

J∑
j=1

bi,j ·R−1Ai,j(A
H
i,jR

−1Ai,j)
−11, (8)

Ai,j = [ap(i,j)
,ap(i+1,j)

,ap(i,j+1)
,ap(i+1,j+1)

], (9)

where Ai,j ∈ CM×4 includes the four corner transfer functions
of ni,j (see Fig. 2) and B = [b1,1, · · · , bi,j , · · · , bI,J ] is an
weight vector for each sub-region.

The LCMV-SS-BF compensates for the disadvantages of
both the LCMV-BF and the SS-BF by combining them: by
using the structure of the SS-BF, the constraint points of the
LCMV-BFs can be placed in the neighborhood, allowing a

wide range RSE. On the other hand, by using the LCMV-BF as
a sub-BF, the SS-BF can construct a filter for continuous region
extraction instead of the sum of filters for discrete points.
So the LCMV-SS-BF can extract sound sources from a wide
range and continuous region without using visual information
and knowledge regarding the number and directions of sound
sources included in the region.

B. Incremental RLS method for LCMV-BF estimation

The SS-BF requires repeated calculations of sub-BFs to
estimate the filter, which increases the computation time.
To solve this problem, we propose a method to reduce the
computation time of the LCMV-BF, which is an adaptive filter
and requires computationally expensive inverse matrices of R
and AHR−1A. To avoid such inverse matrix computation, we
propose an incremental estimation method based on recursive
least square (RLS) method [21].

While the inverse of Rω,t needs to be computed for each
time frame t and angular frequency ω, the RLS method can
compute it incrementally using the result obtained at the
previous time frame. First, Rω,t is defined in a recursive
manner by omitting ω again for simplicity as,

Rt = αRt−1 + (1− α) ztz
H
t , (10)

where α is the forgetting coefficient. Using the Woodbury’s
formula [22], R−1

t can be formulated as follows:

R−1
t =

1

α

(
R−1

t−1 −
1

γ t

R−1
t−1ztz

H
t R−1

t−1

)
(11)

γt =
α

1− α
+ zH

t R−1
t−1zt. (12)

Likewise, the incremental expression of AHR−1A in Eq. (7)
is formulated by using Eq. (11) as,

AHR−1
t A =

1

α

(
AHR−1

t−1A− 1

γt
ltl

H
t

)
(13)

lt = AHR−1
t−1zt. (14)

Using the Woodbury’s formula, D−1 = (AHR−1A)−1 can
be expressed as

D−1
t = α

(
D−1

t−1 +
1

δt
D−1

t−1ltl
H
t D−1

t−1

)
(15)

δt = γt − lHt D−1
t−1lt. (16)

By using Eqs. (11) and (15), the calculation of the LCMV-BF
can be obtained as an incremental estimation without using
inverse matrix calculations.

IV. EVALUATION

The proposed methods are evaluated by simulations with
convolved sound datasets with publically available audio
datasets, in terms of extraction performance improvement and
computational speed.
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A. Experimental setting

As a recording device, a 10 ch spherical microphone array
of radius 3 cm was selected, which has eight microphones at
the equator and another two at the poles, as shown in Figure 1.
The acoustic transfer functions were calculated geometrically
assuming a free acoustic field and plane wave model. For the
simulations, we prepared four datasets, Datasets 1 to 4. The
comparison of each dataset is shown in TABLE I. Datasets 1
and 2 were used to evaluate the extraction performance when
different types of sound sources were mixed together as the
target and noise sources. As the target sources, we used the
train-clean-100 dataset from LibriSpeech [23], which is the
dataset of human speech sounds. As the noise sources, we used
the background noise sources from the CHiME3 dataset [24],
which is the dataset of background noise sounds. Datasets 3
and 4, on the other wards, were used to evaluate the extraction
performance when the same type of sound sources were mixed
together, and the dev-clean dataset from LibriSpeech was used
as both target and noise source. Datasets 1 and 3 were used to
evaluate the extraction performance in the case of the mixture
of one target source and one noise source, while Datasets
2 and 4 were used to evaluate the extraction performance
in the case of the mixture of two target sources and two
noise sources, which means the multiple sources extraction.
An appropriate acoustic transfer function was applied to each
source so that target sources were randomly placed in the target
region and noise sources were randomly placed in the noise
region. And by mixing them, we created 100 6-second-long
synthetic sounds for each Dataset, each R size to be evaluated.
The setting of R were conducted on 20°, 40°, and 60°. Rnin ,
Rnout were set to R+ 20◦,R+ 100◦.

TABLE I
SETTING OF EACH DATASET

Dataset
the number of the kind of

Target Sources Noise Sources Target Sources Noise Sources

Dataset 1 1 1 Speech Background
Dataset 2 2 2 Speech Background
Dataset 3 1 1 Speech speech
Dataset 4 2 2 Speech speech

Six separation methods were compared, including the pro-
posed LCMV-SS-BF (LCMV-SS), the Minimum Variance Dis-
tortionless Response beamformer (MVDR-BF, MVDR), the
LCMV-BF (LCMV), the SS-BF (SS), Independent Low-Rank
Matrix Analysis (ILRMA) [13], [14], and Neural Network
based Generalized Eigenvalue Beamformer (NN-GEV) [1].
The first four methods, including the proposed method, are
beamformer-based approaches. MVDR-BF is the generally
used beamforming method for point source extraction. ILRMA
is a kind of blind source separation method, which separates
the mixture of sound without sound source or system infor-
mation. It specifies the number of sound sources in the sound
mixture and separates the sound mixture into the specified
number of sound sources based on the sound source model.

When used as RSE, the number of sound sources in the sound
mixture must be known, and it is further necessary to determine
whether the separated sound sources are contained within the
target region. NN-GEV is a mask-based method with a neural
network. It generates masks for the target and noise sources
using neural network and calculates the GEV beamformer [25],
[26] using the spatial correlation matrix computed from them.

For evaluating the computation time of LCMV-BF, three
methods, that is, i) the proposed method (RLS2) that applies
the RLS method to R−1 and (AHR−1A)−1, ii) the Block-
wise method (Block) that calculates the inverse matrix, and
iii) RLS1 that applies the RLS method only to R−1 were
compared in terms of the processing speed for computing one
LCMV sub-BF.

The signal-to-distortion ratio (SDR) [27] and the short-time
objective intelligibility measure (STOI) [28] were used as the
objective and subjective metric of sound source extraction
performance, respectively. The real-time factor (RTF) was
used to evaluate the performance of the processing speed,
and it was measured for computing a single LCMV sub-BF.
The measurements were performed using MATLAB on a PC
equipped with an Intel(R) Core(TM) i7-1185G7 @ 3.00 GHz.

B. Parameter settings of each method

For LCMV-SS-BF, ∆, was set to 10◦, and a uniform weight
vector was used for B. For MVDR-BF, the target direction
was set to the central direction of the target region, that is,
(θ, ϕ) = (0◦, 0◦), because only a single direction can be
specified in the target region. For LCMV-BF, the constraint
points are given at the four edges of the target region. For SS-
BF, ∆ was set to 4◦ and MVDR-BF oriented toward the center
of each sub-region was used as the sub-BF. For ILRMA, the
number of sound sources must be given in advance. Therefore,
sound source separation was first performed with the number
of sound sources set equal to or lower than the actual number
of sound sources. Although it is also necessary to determine
whether the sound sources after separation are included in the
target region, this time we ignored this. And selected the one
with the best separation performance among the combinations
of the sums of the separated sound sources as the result. For
NN-GEV, the neural network was trained to estimate a mask
that separates speech from speech mixed with environmental
noise. This condition is favorable for Datasets 1 and 2, while
unfavorable for Datasets 3 and 4. This method is used for
comparison but is not an method for RSE because it depends
on the types of sound sources.

For the calculation methods, RLS1 was initialized with
R−1

0 = I × 105 and α = 0.995. In RLS2, the first 100 frames
are calculated with RLS1, and then R−1 and (AHR−1A)−1

are initialized using the values at that time, and start estimation.

C. Results and discussions

TABLE II and III show the average SDR and STOI for
each method, respectively. TABLE IV shows the average RTF
per LCMV for each calculation method. The results of the
method with the best average performance in the same dataset
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TABLE II
COMPARISON IN SDR [DB]

Dataset R Method
LCMV-SS (proposed) MVDR LCMV SS ILRMA NN-GEV

Dataset 1
20° 10.51 ± 3.91 2.73 ± 3.98 8.44 ± 3.91 2.94 ± 2.40 12.45 ± 7.03 9.01 ± 3.13
40° 9.99 ± 3.37 −0.81 ± 4.52 4.62 ± 4.54 0.41 ± 2.93 13.74 ± 6.53 9.05 ± 3.15
60° 8.96 ± 2.96 −1.81 ± 4.49 0.55 ± 4.19 −1.15 ± 3.63 13.60 ± 7.15 9.23 ± 3.20

Dataset 2
20° 9.85 ± 3.69 3.22 ± 3.02 8.03 ± 3.68 4.32 ± 2.06 −0.74 ± 4.61 6.24 ± 3.38
40° 10.04 ± 2.86 0.44 ± 2.84 4.98 ± 3.77 2.36 ± 2.36 −0.75 ± 4.54 5.27 ± 3.42
60° 8.60 ± 2.39 −0.57 ± 4.00 0.97 ± 3.90 1.09 ± 2.84 −0.80 ± 4.55 3.98 ± 3.47

Dataset 3
20° 13.32 ± 3.84 4.45 ± 3.76 10.31 ± 4.46 4.60 ± 1.69 •10.80 ± 10.61 −3.48 ± 6.78
40° •12.66 ± 2.86 0.92 ± 4.19 7.37 ± 4.34 1.57 ± 1.93 13.30 ± 9.95 −2.68 ± 6.76
60° •10.33 ± 3.37 −2.14 ± 4.14 3.54 ± 4.72 −0.83 ± 2.99 11.42 ± 10.42 −3.09 ± 6.77

Dataset 4
20° 10.40 ± 3.69 4.76 ± 3.39 8.70 ± 3.38 6.31 ± 2.41 2.44 ± 3.70 −5.34 ± 5.31
40° 10.67 ± 3.32 1.54 ± 3.23 6.27 ± 3.42 4.59 ± 2.33 2.40 ± 4.18 −4.55 ± 4.84
60° 9.46 ± 3.06 −0.16 ± 3.96 2.88 ± 3.34 3.21 ± 2.54 2.24 ± 4.13 −6.30 ± 5.88

TABLE III
COMPARISON IN STOI [%]

Dataset R Method
LCMV-SS (proposed) MVDR LCMV SS ILRMA NN-GEV

Dataset 1
20° 92.77 ± 7.98 87.30 ± 8.86 89.41 ± 9.08 89.91 ± 7.84 •93.23 ± 9.01 94.11 ± 7.11
40° •92.74 ± 6.90 82.54 ± 9.31 82.63 ± 10.96 88.38 ± 7.42 95.06 ± 6.99 •94.75 ± 6.58
60° 91.57 ± 7.11 79.22 ± 9.94 73.36 ± 12.36 86.40 ± 8.13 •93.52 ± 9.63 95.13 ± 5.72

Dataset 2
20° 95.14 ± 3.38 82.67 ± 7.08 91.08 ± 5.29 90.47 ± 4.46 69.63 ± 12.35 •94.68 ± 4.20
40° 94.57 ± 2.93 74.11 ± 7.87 83.71 ± 9.22 85.98 ± 6.29 68.60 ± 12.46 •94.19 ± 3.80
60° 92.45 ± 3.55 70.90 ± 10.36 71.78 ± 12.77 84.36 ± 7.66 68.95 ± 12.00 •92.01 ± 5.16

Dataset 3
20° 95.02 ± 4.57 90.62 ± 4.86 91.92 ± 6.13 92.84 ± 3.48 86.18 ± 13.21 62.42 ± 19.39
40° 95.10 ± 2.88 84.63 ± 8.14 88.32 ± 7.14 89.89 ± 4.61 89.77 ± 12.53 63.62 ± 19.37
60° 93.46 ± 3.90 80.75 ± 8.08 81.40 ± 10.37 88.33 ± 5.20 86.98 ± 13.26 61.11 ± 19.76

Dataset 4
20° 91.80 ± 5.79 83.10 ± 8.90 89.64 ± 6.00 •90.25 ± 5.02 73.84 ± 10.80 55.22 ± 16.90
40° 91.91 ± 5.29 73.60 ± 10.26 84.95 ± 7.50 85.90 ± 5.87 73.33 ± 11.11 54.77 ± 16.37
60° 90.92 ± 5.01 69.06 ± 11.44 76.50 ± 9.48 82.37 ± 7.76 71.79 ± 12.45 50.10 ± 18.33

are shown in bold. In addition, P-tests were performed between
the method that produced the best average performance (the
method shown in bold) and the other methods to verify the
difference in superiority between methods. This was done
for each dataset and each R. If the P value is greater than
0.01, there is no superiority difference. Results that were
determined to have no superiority difference (equivalent to the
best-performing method) are indicated by a black circle (•) in
front of the number.

From TABLE II and III, In Dataset 2, Dataset 3, and Dataset
4, the proposed method is found to have the best performance
with a superiority difference (although it was determined to
be equivalent to ILRMA for SDR in Dataset 3). The result of
the proposed method on Dataset 1 also showed performance
that was second to the best method, although a difference
in superiority occurred between it and the best method. This
means that the proposed method has the best RSE performance
among these methods. Dataset 1 is the most typical situation
of one speaker and one background noise, where enhancement
can be achieved with various source enhancement techniques
that are not specific to RSE. In particular, IRLMA omits
sound source localization, so experiments are conducted under
favorable conditions.

In addition, what is noteworthy about the proposed method
is its robustness to various situations. Observing the perfor-
mance over varying R, it is shown that the performance

degradation of the proposed method from R = 20◦ to R = 60◦

is limited to 1.80 dB in SDR and 1.58 % in STOI. This is the
smallest degradation among the beamforming-based methods.
This indicates that the problem that RSE over a wide region
was difficult with a single LCMV-BF has been greatly relaxed.
For the variation in the number of sound sources in the target
region, cases where one target source (Datasets 1 and 3) and
two target sources (Datasets 2 and 4) are compared. The
proposed method maintains consistent performance between
Datasets 1, 3 and 2, 4, with an SDR difference of 1.12 dB
and STOI difference of 0.65 %, regardless of the number
of the target sources. This can be said to be a property of
beamforming-based methods that are based on spatial models.
On the other hand, IRLMA significantly deteriorated as the
number of sources increased. This is because as the number of
sound sources increases, more complex models for generating
sound sources become necessary. To observe the performance
over types of sound sources mixed, source separation of the
mixture of different types (Datasets 1 and 2) and that of the
same type (Datasets 3 and 4) are compared. The results showed
that the performance of the proposed method was independent
of the source type, with an SDR difference of 1.48 dB and
STOI difference of 0.17 % between Datasets 1, 2 and 3, 4,
while NN-GEV showed significant performance degradation
under unfavorable conditions. These results suggest the robust-
ness of the proposed method against the changes in the region
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TABLE IV
COMPARISON IN RTF

Method Block RLS1 RLS2

RTF 1.77 0.73 0.62

size, number of sources, and types of sources. The proposed
method can be said to be the most suitable method for RSE.

From TABLE IV, the proposed method showed the best RTF
and achieved real-time processing. The proposed method was
2.85× and 1.18× faster than Block and RLS1, respectively.
This demonstrates the effectiveness of the proposed method
also in computational time.

V. CONCLUSION

This paper presented surface source separation for a wide
range of continuous regions at high speed and proposed
LCMV-SS-BF by integrating LCMV-BF and SS-BF with an
incremental RLS method for LCMV-BF estimation. Simulation
results showed that the proposed method outperformed other
methods such as beamforming, blind separation, and mask-
based separation using a neural network, and the robustness
for the changes in region size, number of sources, and types of
sources. In terms of processing speed, it worked in real time
and was 2.85 times faster than a conventional method with
inverse matrix calculations. Future work includes validation in
a reverberation environment.
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